Data preprocessing of eSport game records: Counter-strike: Global offensive
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10363619" target="_blank" >RIV/00216208:11320/17:10363619 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data preprocessing of eSport game records: Counter-strike: Global offensive
Popis výsledku v původním jazyce
Electronic sports or pro gaming have become very popular in this millenium and the increased value of this new industry is attracting investors with various interests. One of these interest is game betting, which requires player and team rating, game result predictions, and fraud detection techniques. In our work, we focus on preprocessing data of Counter-Strike: Global Offensive game in order to employ subsequent data analysis methods for quantifying player performance. The data preprocessing is difficult since the data format is complex and undocumented, the data quality of available sources is low, and there is no direct way how to match players from the recorded files with players listed on public boards such as HLTV website. We have summarized our experience from the data preprocessing and provide a way how to establish a player matching based on their metadata.
Název v anglickém jazyce
Data preprocessing of eSport game records: Counter-strike: Global offensive
Popis výsledku anglicky
Electronic sports or pro gaming have become very popular in this millenium and the increased value of this new industry is attracting investors with various interests. One of these interest is game betting, which requires player and team rating, game result predictions, and fraud detection techniques. In our work, we focus on preprocessing data of Counter-Strike: Global Offensive game in order to employ subsequent data analysis methods for quantifying player performance. The data preprocessing is difficult since the data format is complex and undocumented, the data quality of available sources is low, and there is no direct way how to match players from the recorded files with players listed on public boards such as HLTV website. We have summarized our experience from the data preprocessing and provide a way how to establish a player matching based on their metadata.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
6th International Conference on Data Science, Technology and Applications, DATA 2017
ISBN
978-989-758-255-4
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
8
Strana od-do
269-276
Název nakladatele
SciTePress
Místo vydání
Setúbal
Místo konání akce
Madrid
Datum konání akce
24. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—