Tackling generation of combat encounters in role-playing digital games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440816" target="_blank" >RIV/00216208:11320/21:10440816 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2962/paper34.pdf" target="_blank" >http://ceur-ws.org/Vol-2962/paper34.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tackling generation of combat encounters in role-playing digital games
Popis výsledku v původním jazyce
Procedural content generation (PCG) has been used in digital games since the early 1980s. Here we focus on a new problem of generating personalized combat encounters in role playing video games (RPG). A game should provide a player with combat encounters of adequate difficulties, which ideally should be matching the player’s performance in order for a game to provide adequate challenge to the player. In this paper, we describe our own reinforcement learning algorithm that estimates difficulties of combat encounters during game runtime, which can be them used to find next suitable combat encounter of desired difficulty in a stochastic hill-climbing manner. After a player finishes the encounter, its result is propagated through the matrix to update the estimations of not only the presented combat encounter, but also similar ones. To test our solution, we conducted a preliminary study with human players on a simplified RPG game we have developed. The data collected suggests our algorithm can adapt the matrix to the player performance fast from little amounts of data, even though not precisely.
Název v anglickém jazyce
Tackling generation of combat encounters in role-playing digital games
Popis výsledku anglicky
Procedural content generation (PCG) has been used in digital games since the early 1980s. Here we focus on a new problem of generating personalized combat encounters in role playing video games (RPG). A game should provide a player with combat encounters of adequate difficulties, which ideally should be matching the player’s performance in order for a game to provide adequate challenge to the player. In this paper, we describe our own reinforcement learning algorithm that estimates difficulties of combat encounters during game runtime, which can be them used to find next suitable combat encounter of desired difficulty in a stochastic hill-climbing manner. After a player finishes the encounter, its result is propagated through the matrix to update the estimations of not only the presented combat encounter, but also similar ones. To test our solution, we conducted a preliminary study with human players on a simplified RPG game we have developed. The data collected suggests our algorithm can adapt the matrix to the player performance fast from little amounts of data, even though not precisely.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
69-76
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Neuveden
Místo konání akce
Helpa, Slovakia
Datum konání akce
24. 9. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—