Coevolution of AI and Level Generators for Super Mario Game
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10440728" target="_blank" >RIV/00216208:11320/21:10440728 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CEC45853.2021.9504742" target="_blank" >https://doi.org/10.1109/CEC45853.2021.9504742</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC45853.2021.9504742" target="_blank" >10.1109/CEC45853.2021.9504742</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coevolution of AI and Level Generators for Super Mario Game
Popis výsledku v původním jazyce
Procedural content generation (PCG) is now used in many games to generate a wide variety of content. One way of evaluating this content is by artificial intelligence (AI) controlled players. Inversely, PCG content can also be used when training AI players to ensure generalization. Evolutionary algorithms are employed in both AI and PCG fields, but rarely simultaneously. In this work, we use evolutionary algorithms for both AI players and level generation in the platformer game Super Mario. We further combine them into a coevolution, where the AI players are evaluated by adapting level generators, and vice versa, level generators are evaluated by adapting AI players. This yields an AI player trained on gradually more difficult levels and a sequence of level generators with gradually increasing difficulty. Such sequence of generators might be useful for human game playing in commercial games.
Název v anglickém jazyce
Coevolution of AI and Level Generators for Super Mario Game
Popis výsledku anglicky
Procedural content generation (PCG) is now used in many games to generate a wide variety of content. One way of evaluating this content is by artificial intelligence (AI) controlled players. Inversely, PCG content can also be used when training AI players to ensure generalization. Evolutionary algorithms are employed in both AI and PCG fields, but rarely simultaneously. In this work, we use evolutionary algorithms for both AI players and level generation in the platformer game Super Mario. We further combine them into a coevolution, where the AI players are evaluated by adapting level generators, and vice versa, level generators are evaluated by adapting AI players. This yields an AI player trained on gradually more difficult levels and a sequence of level generators with gradually increasing difficulty. Such sequence of generators might be useful for human game playing in commercial games.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE Congress on Evolutionary Computation (CEC 2021)
ISBN
978-1-72818-392-3
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
2093-2100
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Online
Datum konání akce
28. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000703866100264