Irreversible 2-conversion set in graphs of bounded degree
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366182" target="_blank" >RIV/00216208:11320/17:10366182 - isvavai.cz</a>
Výsledek na webu
<a href="https://dmtcs.episciences.org/3952" target="_blank" >https://dmtcs.episciences.org/3952</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Irreversible 2-conversion set in graphs of bounded degree
Popis výsledku v původním jazyce
An irreversible k-threshold process (also a k-neighbor bootstrap percolation) is a dynamic process on a graph where vertices change color from white to black if they have at least k black neighbors. An irreversible k-conversion set of a graph G is a subset S of vertices of G such that the irreversible k-threshold process starting with the vertices of S black eventually changes all vertices of G to black. We show that deciding the existence of an irreversible 2-conversion set of a given size is NP-complete, even for graphs of maximum degree 4, which answers a question of Dreyer and Roberts. Conversely, we show that for graphs of maximum degree 3, the minimum size of an irreversible 2-conversion set can be computed in polynomial time. Moreover, we find an optimal irreversible 3-conversion set for the toroidal grid, simplifying constructions of Pike and Zou.
Název v anglickém jazyce
Irreversible 2-conversion set in graphs of bounded degree
Popis výsledku anglicky
An irreversible k-threshold process (also a k-neighbor bootstrap percolation) is a dynamic process on a graph where vertices change color from white to black if they have at least k black neighbors. An irreversible k-conversion set of a graph G is a subset S of vertices of G such that the irreversible k-threshold process starting with the vertices of S black eventually changes all vertices of G to black. We show that deciding the existence of an irreversible 2-conversion set of a given size is NP-complete, even for graphs of maximum degree 4, which answers a question of Dreyer and Roberts. Conversely, we show that for graphs of maximum degree 3, the minimum size of an irreversible 2-conversion set can be computed in polynomial time. Moreover, we find an optimal irreversible 3-conversion set for the toroidal grid, simplifying constructions of Pike and Zou.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics and Theoretical Computer Science
ISSN
1462-7264
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000423286200003
EID výsledku v databázi Scopus
2-s2.0-85033566252