Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Irreversible 2-conversion set in graphs of bounded degree

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366182" target="_blank" >RIV/00216208:11320/17:10366182 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dmtcs.episciences.org/3952" target="_blank" >https://dmtcs.episciences.org/3952</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Irreversible 2-conversion set in graphs of bounded degree

  • Popis výsledku v původním jazyce

    An irreversible k-threshold process (also a k-neighbor bootstrap percolation) is a dynamic process on a graph where vertices change color from white to black if they have at least k black neighbors. An irreversible k-conversion set of a graph G is a subset S of vertices of G such that the irreversible k-threshold process starting with the vertices of S black eventually changes all vertices of G to black. We show that deciding the existence of an irreversible 2-conversion set of a given size is NP-complete, even for graphs of maximum degree 4, which answers a question of Dreyer and Roberts. Conversely, we show that for graphs of maximum degree 3, the minimum size of an irreversible 2-conversion set can be computed in polynomial time. Moreover, we find an optimal irreversible 3-conversion set for the toroidal grid, simplifying constructions of Pike and Zou.

  • Název v anglickém jazyce

    Irreversible 2-conversion set in graphs of bounded degree

  • Popis výsledku anglicky

    An irreversible k-threshold process (also a k-neighbor bootstrap percolation) is a dynamic process on a graph where vertices change color from white to black if they have at least k black neighbors. An irreversible k-conversion set of a graph G is a subset S of vertices of G such that the irreversible k-threshold process starting with the vertices of S black eventually changes all vertices of G to black. We show that deciding the existence of an irreversible 2-conversion set of a given size is NP-complete, even for graphs of maximum degree 4, which answers a question of Dreyer and Roberts. Conversely, we show that for graphs of maximum degree 3, the minimum size of an irreversible 2-conversion set can be computed in polynomial time. Moreover, we find an optimal irreversible 3-conversion set for the toroidal grid, simplifying constructions of Pike and Zou.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Mathematics and Theoretical Computer Science

  • ISSN

    1462-7264

  • e-ISSN

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    000423286200003

  • EID výsledku v databázi Scopus

    2-s2.0-85033566252