Quantum effects and quantum chaos in multidimensional tunneling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367391" target="_blank" >RIV/00216208:11320/17:10367391 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevE.96.062201" target="_blank" >http://dx.doi.org/10.1103/PhysRevE.96.062201</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.96.062201" target="_blank" >10.1103/PhysRevE.96.062201</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantum effects and quantum chaos in multidimensional tunneling
Popis výsledku v původním jazyce
The ground-state energy splitting due to tunneling in two-dimensional double wells of the form V (x, y) = (x(2) - R-2)(2)/8R(2) + x(2) - R-2/R-2 gamma y +omega(2)/2 y(2) is calculated. Several results are reported. First, we give a systematic WKB expansion of the splitting in series in powers of R-2, each term of the series being a finite polynomial in gamma(2). We find an ascending sequence of the values of the parameter. characterizing the curvature of the classical path, for which the successive corrections to the leading order vanish. This effect arises because curvature of the path and quantum nature of motion cancel each other; it does not appear for one-dimensional double wells. Second, we find that for large curvatures, such as for those describing the proton transfer in a malonaldehyde and hydroxalate anion, this expansion is of no practical use. Thus, the WKB expansion is reordered to a strong coupling form, each term of the series in powers of R-2 being an infinite series in powers of (gamma) over bar (2), (gamma) over bar = gamma/R. Third, we find that the radius of convergence of the series is determined by the singularity at (gamma) over bars = omega/2. At the singularity the system changes its character from being a double well to become a single well. Close to this singularity the classical action and its first quantum correction are found to be nonanalytic functions of gamma, most likely of the form [1 - ((gamma) over bar/(gamma) over bars)(2)](alpha), where alpha = 1/2 and alpha = - 1/2 for the classical action and its first quantum correction, respectively. Since in the semiclassical regime of large R the splitting is exponentially dependent on the value of the classical action and its first quantum correction, close to the singularity we establish strong sensitivity of the splitting on slight variations of the parameter. (gamma) over bar entering the Hamiltonian linearly.
Název v anglickém jazyce
Quantum effects and quantum chaos in multidimensional tunneling
Popis výsledku anglicky
The ground-state energy splitting due to tunneling in two-dimensional double wells of the form V (x, y) = (x(2) - R-2)(2)/8R(2) + x(2) - R-2/R-2 gamma y +omega(2)/2 y(2) is calculated. Several results are reported. First, we give a systematic WKB expansion of the splitting in series in powers of R-2, each term of the series being a finite polynomial in gamma(2). We find an ascending sequence of the values of the parameter. characterizing the curvature of the classical path, for which the successive corrections to the leading order vanish. This effect arises because curvature of the path and quantum nature of motion cancel each other; it does not appear for one-dimensional double wells. Second, we find that for large curvatures, such as for those describing the proton transfer in a malonaldehyde and hydroxalate anion, this expansion is of no practical use. Thus, the WKB expansion is reordered to a strong coupling form, each term of the series in powers of R-2 being an infinite series in powers of (gamma) over bar (2), (gamma) over bar = gamma/R. Third, we find that the radius of convergence of the series is determined by the singularity at (gamma) over bars = omega/2. At the singularity the system changes its character from being a double well to become a single well. Close to this singularity the classical action and its first quantum correction are found to be nonanalytic functions of gamma, most likely of the form [1 - ((gamma) over bar/(gamma) over bars)(2)](alpha), where alpha = 1/2 and alpha = - 1/2 for the classical action and its first quantum correction, respectively. Since in the semiclassical regime of large R the splitting is exponentially dependent on the value of the classical action and its first quantum correction, close to the singularity we establish strong sensitivity of the splitting on slight variations of the parameter. (gamma) over bar entering the Hamiltonian linearly.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-06240S" target="_blank" >GA16-06240S: Struktura a dynamika organokovových komplexů v biologickém prostředí.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
—
Svazek periodika
96
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
000416850600006
EID výsledku v databázi Scopus
—