Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Abstract tilting theory for quivers and related categories

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383382" target="_blank" >RIV/00216208:11320/18:10383382 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.2140/akt.2018.3.71" target="_blank" >https://doi.org/10.2140/akt.2018.3.71</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2140/akt.2018.3.71" target="_blank" >10.2140/akt.2018.3.71</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Abstract tilting theory for quivers and related categories

  • Popis výsledku v původním jazyce

    We generalize the construction of reflection functors from classical representation theory of quivers to arbitrary small categories with freely attached sinks or sources. These reflection morphisms are shown to induce equivalences between the corresponding representation theories with values in arbitrary stable homotopy theories, including representations over fields, rings or schemes as well as differential-graded and spectral representations. Specializing to representations over a field and to specific shapes, this recovers derived equivalences of Happel for finite, acyclic quivers. However, even over a field our main result leads to new derived equivalences, for example, for not necessarily finite or acyclic quivers. Our results rely on a careful analysis of the compatibility of gluing constructions for small categories with homotopy Kan extensions and homotopical epimorphisms, and on a study of the combinatorics of amalgamations of categories.

  • Název v anglickém jazyce

    Abstract tilting theory for quivers and related categories

  • Popis výsledku anglicky

    We generalize the construction of reflection functors from classical representation theory of quivers to arbitrary small categories with freely attached sinks or sources. These reflection morphisms are shown to induce equivalences between the corresponding representation theories with values in arbitrary stable homotopy theories, including representations over fields, rings or schemes as well as differential-graded and spectral representations. Specializing to representations over a field and to specific shapes, this recovers derived equivalences of Happel for finite, acyclic quivers. However, even over a field our main result leads to new derived equivalences, for example, for not necessarily finite or acyclic quivers. Our results rely on a careful analysis of the compatibility of gluing constructions for small categories with homotopy Kan extensions and homotopical epimorphisms, and on a study of the combinatorics of amalgamations of categories.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ANNALS OF K-THEORY

  • ISSN

    2379-1683

  • e-ISSN

  • Svazek periodika

    3

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    54

  • Strana od-do

    71-124

  • Kód UT WoS článku

    000432712300004

  • EID výsledku v databázi Scopus