Abstract tilting theory for quivers and related categories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383382" target="_blank" >RIV/00216208:11320/18:10383382 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.2140/akt.2018.3.71" target="_blank" >https://doi.org/10.2140/akt.2018.3.71</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2140/akt.2018.3.71" target="_blank" >10.2140/akt.2018.3.71</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Abstract tilting theory for quivers and related categories
Popis výsledku v původním jazyce
We generalize the construction of reflection functors from classical representation theory of quivers to arbitrary small categories with freely attached sinks or sources. These reflection morphisms are shown to induce equivalences between the corresponding representation theories with values in arbitrary stable homotopy theories, including representations over fields, rings or schemes as well as differential-graded and spectral representations. Specializing to representations over a field and to specific shapes, this recovers derived equivalences of Happel for finite, acyclic quivers. However, even over a field our main result leads to new derived equivalences, for example, for not necessarily finite or acyclic quivers. Our results rely on a careful analysis of the compatibility of gluing constructions for small categories with homotopy Kan extensions and homotopical epimorphisms, and on a study of the combinatorics of amalgamations of categories.
Název v anglickém jazyce
Abstract tilting theory for quivers and related categories
Popis výsledku anglicky
We generalize the construction of reflection functors from classical representation theory of quivers to arbitrary small categories with freely attached sinks or sources. These reflection morphisms are shown to induce equivalences between the corresponding representation theories with values in arbitrary stable homotopy theories, including representations over fields, rings or schemes as well as differential-graded and spectral representations. Specializing to representations over a field and to specific shapes, this recovers derived equivalences of Happel for finite, acyclic quivers. However, even over a field our main result leads to new derived equivalences, for example, for not necessarily finite or acyclic quivers. Our results rely on a careful analysis of the compatibility of gluing constructions for small categories with homotopy Kan extensions and homotopical epimorphisms, and on a study of the combinatorics of amalgamations of categories.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ANNALS OF K-THEORY
ISSN
2379-1683
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
54
Strana od-do
71-124
Kód UT WoS článku
000432712300004
EID výsledku v databázi Scopus
—