Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Flag representations of mixed volumes and mixed functionals of convex bodies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384458" target="_blank" >RIV/00216208:11320/18:10384458 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jmaa.2017.12.039" target="_blank" >https://doi.org/10.1016/j.jmaa.2017.12.039</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2017.12.039" target="_blank" >10.1016/j.jmaa.2017.12.039</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Flag representations of mixed volumes and mixed functionals of convex bodies

  • Popis výsledku v původním jazyce

    Mixed volumes V(K-1, ... , K-d) of convex bodies K-1, ... , K-d in Euclidean space R-d are of central importance in the Brunn-Minkowski theory. Representations for mixed volumes are available in special cases, for example as integrals over the unit sphere with respect to mixed area measures. More generally, in Hug-Rataj-Weil (2013) [11] a formula for V(K[n], M[d - n]), n is an element of {1, ... , d - 1), as a double integral over flag manifolds was established which involved certain flag measures of the convex bodies K and M (and required a general position of the bodies). In the following, we discuss the general case V(K-1[n(1)], ... , K-k[n(k)]), n(1) + ... + n(k) = d, and show a corresponding result involving the flag measures Omega(n1) (K-1;.), ... , Omega(nk) (K-k;.). For this purpose, we first establish a curvature representation of mixed volumes over the normal bundles of the bodies involved. We also obtain a corresponding flag representation for the mixed functionals from translative integral geometry and a local version, for mixed (translative) curvature measures.

  • Název v anglickém jazyce

    Flag representations of mixed volumes and mixed functionals of convex bodies

  • Popis výsledku anglicky

    Mixed volumes V(K-1, ... , K-d) of convex bodies K-1, ... , K-d in Euclidean space R-d are of central importance in the Brunn-Minkowski theory. Representations for mixed volumes are available in special cases, for example as integrals over the unit sphere with respect to mixed area measures. More generally, in Hug-Rataj-Weil (2013) [11] a formula for V(K[n], M[d - n]), n is an element of {1, ... , d - 1), as a double integral over flag manifolds was established which involved certain flag measures of the convex bodies K and M (and required a general position of the bodies). In the following, we discuss the general case V(K-1[n(1)], ... , K-k[n(k)]), n(1) + ... + n(k) = d, and show a corresponding result involving the flag measures Omega(n1) (K-1;.), ... , Omega(nk) (K-k;.). For this purpose, we first establish a curvature representation of mixed volumes over the normal bundles of the bodies involved. We also obtain a corresponding flag representation for the mixed functionals from translative integral geometry and a local version, for mixed (translative) curvature measures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-08218S" target="_blank" >GA15-08218S: Teorie reálných funkcí a její aplikace v geometrii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Svazek periodika

    460

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    32

  • Strana od-do

    745-776

  • Kód UT WoS článku

    000425705800017

  • EID výsledku v databázi Scopus

    2-s2.0-85038383908