Mixed curvature measures of translative integral geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384531" target="_blank" >RIV/00216208:11320/18:10384531 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10711-017-0278-1" target="_blank" >https://doi.org/10.1007/s10711-017-0278-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10711-017-0278-1" target="_blank" >10.1007/s10711-017-0278-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mixed curvature measures of translative integral geometry
Popis výsledku v původním jazyce
The curvature measures of a set X with singularities are measures concentrated on the normal bundle of X, which describe the local geometry of the set X. For given finitely many convex bodies or, more generally, sets with positive reach, the translative integral formula for curvature measures relates the integral mean of the curvature measures of the intersections of the given sets, one fixed and the others translated, to the mixed curvature measures of the given sets. In the case of two sets of positive reach, a representation of these mixed measures in terms of generalized curvatures, defined on the normal bundles of the sets, is known. For more than two sets, a description of mixed curvature measures in terms of rectifiable currents has been derived previously. Here we provide a representation of mixed curvature measures of sets with positive reach based on generalized curvatures. The special case of convex polyhedra is treated in detail.
Název v anglickém jazyce
Mixed curvature measures of translative integral geometry
Popis výsledku anglicky
The curvature measures of a set X with singularities are measures concentrated on the normal bundle of X, which describe the local geometry of the set X. For given finitely many convex bodies or, more generally, sets with positive reach, the translative integral formula for curvature measures relates the integral mean of the curvature measures of the intersections of the given sets, one fixed and the others translated, to the mixed curvature measures of the given sets. In the case of two sets of positive reach, a representation of these mixed measures in terms of generalized curvatures, defined on the normal bundles of the sets, is known. For more than two sets, a description of mixed curvature measures in terms of rectifiable currents has been derived previously. Here we provide a representation of mixed curvature measures of sets with positive reach based on generalized curvatures. The special case of convex polyhedra is treated in detail.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-08218S" target="_blank" >GA15-08218S: Teorie reálných funkcí a její aplikace v geometrii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geometriae Dedicata
ISSN
0046-5755
e-ISSN
—
Svazek periodika
195
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
101-120
Kód UT WoS článku
000437122700006
EID výsledku v databázi Scopus
2-s2.0-85027718482