Recursive estimation of the multivariate EWMA process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10400163" target="_blank" >RIV/00216208:11320/19:10400163 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.18267/pr.2019.los.186.46" target="_blank" >http://dx.doi.org/10.18267/pr.2019.los.186.46</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18267/pr.2019.los.186.46" target="_blank" >10.18267/pr.2019.los.186.46</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recursive estimation of the multivariate EWMA process
Popis výsledku v původním jazyce
Recursive estimation methods suitable for univariate GARCH models have been recently studied in the literature. They undoubtedly represent attractive alternatives to the standard non-recursive estimation procedures with many practical applications (especially in the context of high-frequency financial data). It might be truly advantageous to adopt numerically effective techniques that can estimate, monitor, and control such models in real time. The aim of this contribution is to extend this methodology to the multivariate EMWA process by applying general recursive estimation instruments. The multivariate exponentially weighted moving average (MEWMA) model is a particular modelling scheme advocated by RiskMetrics that is capable of predicting the current level of financial time series covolatilities. In particular, the suggested approach seems to be useful for various multivariate financial time series with (conditionally) correlated components. Monte Carlo experiments are performed in order to investigate statistic features of the proposed estimation algorithm. Moreover, an empirical financial analysis demonstrates its capability.
Název v anglickém jazyce
Recursive estimation of the multivariate EWMA process
Popis výsledku anglicky
Recursive estimation methods suitable for univariate GARCH models have been recently studied in the literature. They undoubtedly represent attractive alternatives to the standard non-recursive estimation procedures with many practical applications (especially in the context of high-frequency financial data). It might be truly advantageous to adopt numerically effective techniques that can estimate, monitor, and control such models in real time. The aim of this contribution is to extend this methodology to the multivariate EMWA process by applying general recursive estimation instruments. The multivariate exponentially weighted moving average (MEWMA) model is a particular modelling scheme advocated by RiskMetrics that is capable of predicting the current level of financial time series covolatilities. In particular, the suggested approach seems to be useful for various multivariate financial time series with (conditionally) correlated components. Monte Carlo experiments are performed in order to investigate statistic features of the proposed estimation algorithm. Moreover, an empirical financial analysis demonstrates its capability.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-00676S" target="_blank" >GA17-00676S: Dynamické modely rizika ve financích a pojišťovnictví</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 13th International Days of Statistics and Economics
ISBN
978-80-87990-18-6
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
464-473
Název nakladatele
Melandrium
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
5. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000589182000047