Using Classical Planning in Adversarial Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408255" target="_blank" >RIV/00216208:11320/19:10408255 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/19:00339629
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICTAI.2019.00185" target="_blank" >http://dx.doi.org/10.1109/ICTAI.2019.00185</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICTAI.2019.00185" target="_blank" >10.1109/ICTAI.2019.00185</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Classical Planning in Adversarial Problems
Popis výsledku v původním jazyce
Many problems from classical planning are applied in the environment with other, possibly adversarial agents. However, plans found by classical planning algorithms lack the robustness against the actions of other agents - the quality of computed plans can be significantly worse compared to the model. To explicitly reason about other (adversarial) agents, the game-theoretic framework can be used. The scalability of game-theoretic algorithms, however, is limited and often insufficient for real-world problems. In this paper, we combine classical domain-independent planning algorithms and game-theoretic strategy-generation algorithm where plans form strategies in the game. Our contribution is threefold. First, we provide the methodology for using classical planning in this game-theoretic framework. Second, we analyze the trade-off between the quality of the planning algorithm and the robustness of final randomized plans and the computation time. Finally, we analyze different variants of integration of classical planning algorithms into the game-theoretic framework and show that at the cost a minor loss in the robustness of final plans, we can significantly reduce the computation time.
Název v anglickém jazyce
Using Classical Planning in Adversarial Problems
Popis výsledku anglicky
Many problems from classical planning are applied in the environment with other, possibly adversarial agents. However, plans found by classical planning algorithms lack the robustness against the actions of other agents - the quality of computed plans can be significantly worse compared to the model. To explicitly reason about other (adversarial) agents, the game-theoretic framework can be used. The scalability of game-theoretic algorithms, however, is limited and often insufficient for real-world problems. In this paper, we combine classical domain-independent planning algorithms and game-theoretic strategy-generation algorithm where plans form strategies in the game. Our contribution is threefold. First, we provide the methodology for using classical planning in this game-theoretic framework. Second, we analyze the trade-off between the quality of the planning algorithm and the robustness of final randomized plans and the computation time. Finally, we analyze different variants of integration of classical planning algorithms into the game-theoretic framework and show that at the cost a minor loss in the robustness of final plans, we can significantly reduce the computation time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50803 - Information science (social aspects)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-17125Y" target="_blank" >GJ17-17125Y: Balancování deliberativního a reaktivního chování inteligentních agentů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)
ISBN
978-1-72813-798-8
ISSN
2375-0197
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1335-1340
Název nakladatele
IEEE
Místo vydání
Portland, OR, USA
Místo konání akce
Portland, USA
Datum konání akce
4. 11. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—