SCATTER HALFSPACE DEPTH: GEOMETRIC INSIGHTS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419110" target="_blank" >RIV/00216208:11320/20:10419110 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BQREgFZxYL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BQREgFZxYL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2020.0333-19" target="_blank" >10.21136/AM.2020.0333-19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SCATTER HALFSPACE DEPTH: GEOMETRIC INSIGHTS
Popis výsledku v původním jazyce
Scatter halfspace depth is a statistical tool that allows one to quantify the fitness of a candidate covariance matrix with respect to the scatter structure of a probability distribution. The depth enables simultaneous robust estimation of location and scatter, and nonparametric inference on these. A handful of remarks on the definition and the properties of the scatter halfspace depth are provided. It is argued that the currently used notion of this depth is well suited especially for symmetric random vectors. The scatter halfspace depth closely relates to an appropriate distance of matrix-generated ellipsoids from an upper level set of the (location) halfspace depth function. Several modifications and extensions to the scatter halfspace depth are considered, with their theoretical properties outlined.
Název v anglickém jazyce
SCATTER HALFSPACE DEPTH: GEOMETRIC INSIGHTS
Popis výsledku anglicky
Scatter halfspace depth is a statistical tool that allows one to quantify the fitness of a candidate covariance matrix with respect to the scatter structure of a probability distribution. The depth enables simultaneous robust estimation of location and scatter, and nonparametric inference on these. A handful of remarks on the definition and the properties of the scatter halfspace depth are provided. It is argued that the currently used notion of this depth is well suited especially for symmetric random vectors. The scatter halfspace depth closely relates to an appropriate distance of matrix-generated ellipsoids from an upper level set of the (location) halfspace depth function. Several modifications and extensions to the scatter halfspace depth are considered, with their theoretical properties outlined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometrické aspekty matematické statistiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
287-298
Kód UT WoS článku
000544260100006
EID výsledku v databázi Scopus
2-s2.0-85087090540