PointNet with Spin Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10425001" target="_blank" >RIV/00216208:11320/20:10425001 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2568/paper8.pdf" target="_blank" >http://ceur-ws.org/Vol-2568/paper8.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PointNet with Spin Images
Popis výsledku v původním jazyce
Machine learning on 3D point clouds is challenging due to the absence of natural ordering of the points. PointNet is a neural network architecture capable of processing such unordered point sets directly, which has achieved promising results on classification and segmentation tasks. We explore methods of utilizing point neighborhood features within PointNet and their impact on classification performance. We propose neural models that operate on point clouds accompanied by point features. The results of our experiments suggest that traditional spin image representations of point neighborhoods can improve classification effectiveness of PointNet on datasets comprised of objects that are not aligned into canonical orientation. Furthermore, we introduce a feature-based alternative to spatial transformer, which is a sub-network of PointNet responsible for aligning misaligned objects into canonical orientation. Additional experiments demonstrate that the alternative might be competitive with spatial transformer on challenging datasets.
Název v anglickém jazyce
PointNet with Spin Images
Popis výsledku anglicky
Machine learning on 3D point clouds is challenging due to the absence of natural ordering of the points. PointNet is a neural network architecture capable of processing such unordered point sets directly, which has achieved promising results on classification and segmentation tasks. We explore methods of utilizing point neighborhood features within PointNet and their impact on classification performance. We propose neural models that operate on point clouds accompanied by point features. The results of our experiments suggest that traditional spin image representations of point neighborhoods can improve classification effectiveness of PointNet on datasets comprised of objects that are not aligned into canonical orientation. Furthermore, we introduce a feature-based alternative to spatial transformer, which is a sub-network of PointNet responsible for aligning misaligned objects into canonical orientation. Additional experiments demonstrate that the alternative might be competitive with spatial transformer on challenging datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the SOFSEM 2020 Doctoral Student Research Forum co-located with the 46th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2020), Limassol, Cyprus, January 20-24, 2020
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
12
Strana od-do
85-96
Název nakladatele
CEUR Workshop Proceedings (CEUR-WS.org)
Místo vydání
RWTH Aachen University
Místo konání akce
Limassol, Cyprus
Datum konání akce
20. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—