Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

FLAT RING EPIMORPHISMS AND UNIVERSAL LOCALIZATIONS OF COMMUTATIVE RINGS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436809" target="_blank" >RIV/00216208:11320/21:10436809 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X_C4NhGqYv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X_C4NhGqYv</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/qmath/haaa041" target="_blank" >10.1093/qmath/haaa041</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    FLAT RING EPIMORPHISMS AND UNIVERSAL LOCALIZATIONS OF COMMUTATIVE RINGS

  • Popis výsledku v původním jazyce

    We study different types of localizations of a commutative noetherian ring. More precisely, we provide criteria to decide: (a) if a given flat ring epimorphism is a universal localization in the sense of Cohn and Schofield; and (b) when such universal localizations are classical rings of fractions. In order to find such criteria, we use the theory of support and we analyse the specialization closed subset associated to a flat ring epimorphism. In case the underlying ring is locally factorial or of Krull dimension one, we show that all flat ring epimorphisms are universal localizations. Moreover, it turns out that an answer to the question of when universal localizations are classical depends on the structure of the Picard group. We furthermore discuss the case of normal rings, for which the divisor class group plays an essential role to decide if a given flat ring epimorphism is a universal localization. Finally, we explore several (counter)examples which highlight the necessity of our assumptions.

  • Název v anglickém jazyce

    FLAT RING EPIMORPHISMS AND UNIVERSAL LOCALIZATIONS OF COMMUTATIVE RINGS

  • Popis výsledku anglicky

    We study different types of localizations of a commutative noetherian ring. More precisely, we provide criteria to decide: (a) if a given flat ring epimorphism is a universal localization in the sense of Cohn and Schofield; and (b) when such universal localizations are classical rings of fractions. In order to find such criteria, we use the theory of support and we analyse the specialization closed subset associated to a flat ring epimorphism. In case the underlying ring is locally factorial or of Krull dimension one, we show that all flat ring epimorphisms are universal localizations. Moreover, it turns out that an answer to the question of when universal localizations are classical depends on the structure of the Picard group. We furthermore discuss the case of normal rings, for which the divisor class group plays an essential role to decide if a given flat ring epimorphism is a universal localization. Finally, we explore several (counter)examples which highlight the necessity of our assumptions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-23112S" target="_blank" >GA17-23112S: Strukturní teorie reprezentací algeber (lokalizace a vychylující teorie)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Quarterly Journal of Mathematics

  • ISSN

    0033-5606

  • e-ISSN

  • Svazek periodika

    2020

  • Číslo periodika v rámci svazku

    71

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    32

  • Strana od-do

    1489-1520

  • Kód UT WoS článku

    000600666500013

  • EID výsledku v databázi Scopus

    2-s2.0-85100012681