Algebraic Approach to Promise Constraint Satisfaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10437966" target="_blank" >RIV/00216208:11320/21:10437966 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iVYyRwPgHZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iVYyRwPgHZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3457606" target="_blank" >10.1145/3457606</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algebraic Approach to Promise Constraint Satisfaction
Popis výsledku v původním jazyce
The complexity and approximability of the constraint satisfaction problem (CSP) has been actively studied over the past 20 years. A new version of the CSP, the promise CSP (PCSP), has recently been proposed, motivated by open questions about the approximability of variants of satisfiability and graph colouring. The PCSP significantly extends the standard decision CSP. The complexity of CSPs with a fixed constraint language on a finite domain has recently been fully classified, greatly guided by the algebraic approach, which uses polymorphisms-high-dimensional symmetries of solution spaces-to analyse the complexity of problems. The corresponding classification for PCSPs is wide open and includes some long-standing open questions, such as the complexity of approximate graph colouring, as special cases. The basic algebraic approach to PCSP was initiated by Brakensiek and Guruswami, and in this article, we significantly extend it and lift it from concrete properties of polymorphisms to their abstract properties. We introduce a new class of problems that can be viewed as algebraic versions of the (Gap) Label Cover problem and show that every PCSP with a fixed constraint language is equivalent to a problem of this form. This allows us to identify a "measure of symmetry" that is well suited for comparing and relating the complexity of different PCSPs via the algebraic approach. We demonstrate how our theory can be applied by giving both general and specific hardness/tractability results. Among other things, we improve the state-of-the-art in approximate graph colouring by showing that, for any k >= 3, it is NP-hard to find a (2k - 1)-colouring of a given k-colourable graph.
Název v anglickém jazyce
Algebraic Approach to Promise Constraint Satisfaction
Popis výsledku anglicky
The complexity and approximability of the constraint satisfaction problem (CSP) has been actively studied over the past 20 years. A new version of the CSP, the promise CSP (PCSP), has recently been proposed, motivated by open questions about the approximability of variants of satisfiability and graph colouring. The PCSP significantly extends the standard decision CSP. The complexity of CSPs with a fixed constraint language on a finite domain has recently been fully classified, greatly guided by the algebraic approach, which uses polymorphisms-high-dimensional symmetries of solution spaces-to analyse the complexity of problems. The corresponding classification for PCSPs is wide open and includes some long-standing open questions, such as the complexity of approximate graph colouring, as special cases. The basic algebraic approach to PCSP was initiated by Brakensiek and Guruswami, and in this article, we significantly extend it and lift it from concrete properties of polymorphisms to their abstract properties. We introduce a new class of problems that can be viewed as algebraic versions of the (Gap) Label Cover problem and show that every PCSP with a fixed constraint language is equivalent to a problem of this form. This allows us to identify a "measure of symmetry" that is well suited for comparing and relating the complexity of different PCSPs via the algebraic approach. We demonstrate how our theory can be applied by giving both general and specific hardness/tractability results. Among other things, we improve the state-of-the-art in approximate graph colouring by showing that, for any k >= 3, it is NP-hard to find a (2k - 1)-colouring of a given k-colourable graph.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the ACM
ISSN
0004-5411
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
66
Strana od-do
1-66
Kód UT WoS článku
000744649100007
EID výsledku v databázi Scopus
2-s2.0-85122597501