Lower order terms for the one-level density of a sympletic family of Hecke L-functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438408" target="_blank" >RIV/00216208:11320/21:10438408 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V4eZV2as8-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V4eZV2as8-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2020.11.022" target="_blank" >10.1016/j.jnt.2020.11.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lower order terms for the one-level density of a sympletic family of Hecke L-functions
Popis výsledku v původním jazyce
In this paper we apply the $L$-function Ratios Conjecture to compute the one-level density for a symplectic family of $L$-functions attached to Hecke characters of infinite order. When the support of the Fourier transform of the corresponding test function $f$ reaches $1$, we observe a transition in the main term, as well as in the lower order term. The transition in the lower order term is in line with behavior recently observed by D. Fiorilli, J. Parks, and A. Södergren in their study of a symplectic family of quadratic Dirichlet $L$-functions. We then directly calculate main and lower order terms for test functions $f$ such that supp($widehat{f}) subset [-alpha,alpha]$ for some $alpha <1$, and observe that this unconditional result is in agreement with the prediction provided by the Ratios Conjecture. As the analytic conductor of these L-functions grow twice as large (on a logarithmic scale) as the cardinality of the family in question, this is the optimal support that can be expected with current methods. Finally as a corollary we deduce that, under GRH, at least 75$%$ of these $L$-functions do not vanish at the central point.
Název v anglickém jazyce
Lower order terms for the one-level density of a sympletic family of Hecke L-functions
Popis výsledku anglicky
In this paper we apply the $L$-function Ratios Conjecture to compute the one-level density for a symplectic family of $L$-functions attached to Hecke characters of infinite order. When the support of the Fourier transform of the corresponding test function $f$ reaches $1$, we observe a transition in the main term, as well as in the lower order term. The transition in the lower order term is in line with behavior recently observed by D. Fiorilli, J. Parks, and A. Södergren in their study of a symplectic family of quadratic Dirichlet $L$-functions. We then directly calculate main and lower order terms for test functions $f$ such that supp($widehat{f}) subset [-alpha,alpha]$ for some $alpha <1$, and observe that this unconditional result is in agreement with the prediction provided by the Ratios Conjecture. As the analytic conductor of these L-functions grow twice as large (on a logarithmic scale) as the cardinality of the family in question, this is the optimal support that can be expected with current methods. Finally as a corollary we deduce that, under GRH, at least 75$%$ of these $L$-functions do not vanish at the central point.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Kvadratické formy a numerační systémy nad číselnými tělesy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Number Theory
ISSN
0022-314X
e-ISSN
—
Svazek periodika
2021
Číslo periodika v rámci svazku
221
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
447-483
Kód UT WoS článku
000613669000017
EID výsledku v databázi Scopus
2-s2.0-85098657530