Experimenting with reordering model of phrase-based machine translation system for English to Hindi
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439917" target="_blank" >RIV/00216208:11320/21:10439917 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-981-15-4851-2_31" target="_blank" >https://doi.org/10.1007/978-981-15-4851-2_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-15-4851-2_31" target="_blank" >10.1007/978-981-15-4851-2_31</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimenting with reordering model of phrase-based machine translation system for English to Hindi
Popis výsledku v původním jazyce
Hindi is the national language of India. However, most of the government records, resolutions, news, etc. are documented in English which native urban users may not understand. This fact motivates to develop an automatic language translation system from English to Hindi. Grammatical structure of the Hindi language is very much complex than the English language. This structural difference makes it difficult to achieve good quality translation results. Translation, reordering and language model are the main working components of a translation system. The translation quality depends on how these individual components of the system are configured. Many times the values of these components are language-dependent. Hence, proper settings of these components are very much essential. This paper discusses various settings of the reordering model and through experimentation demonstrates the proper values of the parameters for getting a quality translation from English to Hindi. The freely available n-gram-based BLEU metric and TER metric is used for evaluating the results.
Název v anglickém jazyce
Experimenting with reordering model of phrase-based machine translation system for English to Hindi
Popis výsledku anglicky
Hindi is the national language of India. However, most of the government records, resolutions, news, etc. are documented in English which native urban users may not understand. This fact motivates to develop an automatic language translation system from English to Hindi. Grammatical structure of the Hindi language is very much complex than the English language. This structural difference makes it difficult to achieve good quality translation results. Translation, reordering and language model are the main working components of a translation system. The translation quality depends on how these individual components of the system are configured. Many times the values of these components are language-dependent. Hence, proper settings of these components are very much essential. This paper discusses various settings of the reordering model and through experimentation demonstrates the proper values of the parameters for getting a quality translation from English to Hindi. The freely available n-gram-based BLEU metric and TER metric is used for evaluating the results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing
ISBN
978-981-15-4850-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
289-298
Název nakladatele
Springer
Místo vydání
Singapore
Místo konání akce
Nanded
Datum konání akce
9. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—