Two-Speed Solutions to Non-convex Rate-Independent Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10441308" target="_blank" >RIV/00216208:11320/21:10441308 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1JfHAdHoYn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1JfHAdHoYn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00205-020-01599-z" target="_blank" >10.1007/s00205-020-01599-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two-Speed Solutions to Non-convex Rate-Independent Systems
Popis výsledku v původním jazyce
We consider evolutionary PDE inclusions of the form -λu.λ+Δu-DW0(u)+fCONTAINS AS MEMBERPARTIAL DIFFERENTIALR1(u.)in(0,T)xΩ,where R1 is a positively 1-homogeneous rate-independent dissipation potential and W is a (generally) non-convex energy density. This work constructs solutions to the above system in the slow-loading limit λDOWNWARDS ARROW 0. Our solutions have more regularity both in space and time than those that have been obtained with other approaches. On the "slow" time scale we see strong solutions to a purely rate-independent evolution. Over the jumps, we obtain a detailed description of the behavior of the solution and we resolve the jump transients at a "fast" time scale, where the original rate-dependent evolution is still visible. Crucially, every jump transient splits into a (possibly countable) number of rate-dependent evolutions, for which the energy dissipation can be explicitly computed. This, in particular, yields a global energy equality for the whole evolution process. It also turns out that there is a canonical slow time scale that avoids intermediate-scale effects, where movement occurs in a mixed rate-dependent/rate-independent way. In this way, we obtain precise information on the impact of the approximation on the constructed solution. Our results are illustrated by examples, which elucidate the effects that can occur.
Název v anglickém jazyce
Two-Speed Solutions to Non-convex Rate-Independent Systems
Popis výsledku anglicky
We consider evolutionary PDE inclusions of the form -λu.λ+Δu-DW0(u)+fCONTAINS AS MEMBERPARTIAL DIFFERENTIALR1(u.)in(0,T)xΩ,where R1 is a positively 1-homogeneous rate-independent dissipation potential and W is a (generally) non-convex energy density. This work constructs solutions to the above system in the slow-loading limit λDOWNWARDS ARROW 0. Our solutions have more regularity both in space and time than those that have been obtained with other approaches. On the "slow" time scale we see strong solutions to a purely rate-independent evolution. Over the jumps, we obtain a detailed description of the behavior of the solution and we resolve the jump transients at a "fast" time scale, where the original rate-dependent evolution is still visible. Crucially, every jump transient splits into a (possibly countable) number of rate-dependent evolutions, for which the energy dissipation can be explicitly computed. This, in particular, yields a global energy equality for the whole evolution process. It also turns out that there is a canonical slow time scale that avoids intermediate-scale effects, where movement occurs in a mixed rate-dependent/rate-independent way. In this way, we obtain precise information on the impact of the approximation on the constructed solution. Our results are illustrated by examples, which elucidate the effects that can occur.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archive for Rational Mechanics and Analysis
ISSN
0003-9527
e-ISSN
—
Svazek periodika
239
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
65
Strana od-do
1667-1731
Kód UT WoS článku
000606170800002
EID výsledku v databázi Scopus
2-s2.0-85098972134