Weak Coloring Numbers of Intersection Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10448437" target="_blank" >RIV/00216208:11320/22:10448437 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.SoCG.2022.39" target="_blank" >https://doi.org/10.4230/LIPIcs.SoCG.2022.39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.39" target="_blank" >10.4230/LIPIcs.SoCG.2022.39</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weak Coloring Numbers of Intersection Graphs
Popis výsledku v původním jazyce
Weak and strong coloring numbers are generalizations of the degeneracy of a graph, where for a positive integer k, we seek a vertex ordering such that every vertex can (weakly respectively strongly) reach in k steps only few vertices that precede it in the ordering. Both notions capture the sparsity of a graph or a graph class, and have interesting applications in structural and algorithmic graph theory. Recently, Dvorák, McCarty, and Norin observed a natural volume-based upper bound for the strong coloring numbers of intersection graphs of well-behaved objects in Rd, such as homothets of a compact convex object, or comparable axis-aligned boxes. In this paper, we prove upper and lower bounds for the k-th weak coloring numbers of these classes of intersection graphs. As a consequence, we describe a natural graph class whose strong coloring numbers are polynomial in k, but the weak coloring numbers are exponential. We also observe a surprising difference in terms of the dependence of the weak coloring numbers on the dimension between touching graphs of balls (single-exponential) and hypercubes (double-exponential).
Název v anglickém jazyce
Weak Coloring Numbers of Intersection Graphs
Popis výsledku anglicky
Weak and strong coloring numbers are generalizations of the degeneracy of a graph, where for a positive integer k, we seek a vertex ordering such that every vertex can (weakly respectively strongly) reach in k steps only few vertices that precede it in the ordering. Both notions capture the sparsity of a graph or a graph class, and have interesting applications in structural and algorithmic graph theory. Recently, Dvorák, McCarty, and Norin observed a natural volume-based upper bound for the strong coloring numbers of intersection graphs of well-behaved objects in Rd, such as homothets of a compact convex object, or comparable axis-aligned boxes. In this paper, we prove upper and lower bounds for the k-th weak coloring numbers of these classes of intersection graphs. As a consequence, we describe a natural graph class whose strong coloring numbers are polynomial in k, but the weak coloring numbers are exponential. We also observe a surprising difference in terms of the dependence of the weak coloring numbers on the dimension between touching graphs of balls (single-exponential) and hypercubes (double-exponential).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL2005" target="_blank" >LL2005: Algoritmy a složitost v rámci a nad omezenou expanzí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-227-3
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
1-15
Název nakladatele
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Berlín
Datum konání akce
7. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—