Restricted Minimum Condition in Reduced Commutative Rings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452372" target="_blank" >RIV/00216208:11320/22:10452372 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L1sGzd7Qnx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L1sGzd7Qnx</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00009-022-02190-4" target="_blank" >10.1007/s00009-022-02190-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Restricted Minimum Condition in Reduced Commutative Rings
Popis výsledku v původním jazyce
We say that a commutative ring R satisfies the restricted minimum (RM) condition if for all essential ideals I in R, the factor R/I is an Artinian ring. We will focus on Noetherian reduced rings because in this setting known results for RM domains generalize well. However, as we will show, RM rings need not be Noetherian and may have nilpotent elements. One of the classic results in the theory of RM rings is that for Noetherian domains the RM condition corresponds to having Krull dimension at most one. We will show that this can be generalized to reduced Noetherian rings, thus proving that affine rings corresponding to curves are RM. We will give examples showing that the assumption that the ring is reduced is not superfluous. In the second part, we will study CDR domains, i.e., domains where for any two ideals I, J the inclusion I subset of J implies that I is a multiple of J. We will prove that CDR domains are RM and this will allow us to give a new characterization of Dedekind domains. Examples of RM rings for various classes of rings will be given. In particular, we will show that a ring of polynomials R[x] is RM if and only if R is a reduced Artinian ring. And we will study the relation between RM rings and UFDs.
Název v anglickém jazyce
Restricted Minimum Condition in Reduced Commutative Rings
Popis výsledku anglicky
We say that a commutative ring R satisfies the restricted minimum (RM) condition if for all essential ideals I in R, the factor R/I is an Artinian ring. We will focus on Noetherian reduced rings because in this setting known results for RM domains generalize well. However, as we will show, RM rings need not be Noetherian and may have nilpotent elements. One of the classic results in the theory of RM rings is that for Noetherian domains the RM condition corresponds to having Krull dimension at most one. We will show that this can be generalized to reduced Noetherian rings, thus proving that affine rings corresponding to curves are RM. We will give examples showing that the assumption that the ring is reduced is not superfluous. In the second part, we will study CDR domains, i.e., domains where for any two ideals I, J the inclusion I subset of J implies that I is a multiple of J. We will prove that CDR domains are RM and this will allow us to give a new characterization of Dedekind domains. Examples of RM rings for various classes of rings will be given. In particular, we will show that a ring of polynomials R[x] is RM if and only if R is a reduced Artinian ring. And we will study the relation between RM rings and UFDs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mediterranean Journal of Mathematics
ISSN
1660-5446
e-ISSN
1660-5454
Svazek periodika
19
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
253
Kód UT WoS článku
000868460900002
EID výsledku v databázi Scopus
2-s2.0-85139858920