Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453564" target="_blank" >RIV/00216208:11320/22:10453564 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eQQhtaSMPX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eQQhtaSMPX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-022-01263-5" target="_blank" >10.1007/s11075-022-01263-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning
Popis výsledku v původním jazyce
We consider operator preconditioning B-1A, which is employed in the numerical solution of boundary value problems. Here, the self-adjoint operators A,B:H10(Ω)RIGHTWARDS ARROWH-1(Ω) are the standard integral/functional representations of the partial differential operators -NABLADOT OPERATOR (k(x)NABLAu) and -NABLADOT OPERATOR (g(x)NABLAu), respectively, and the scalar coefficient functions k(x) and g(x) are assumed to be continuous throughout the closure of the solution domain. The function g(x) is also assumed to be uniformly positive. When the discretized problem, with the preconditioned operator B-1nAn, is solved with Krylov subspace methods, the convergence behavior depends on the distribution of the eigenvalues. Therefore, it is crucial to understand how the eigenvalues of B-1nAn are related to the spectrum of B-1A. Following the path started in the two recent papers published in SIAM J. Numer. Anal. [57 (2019), pp. 1369-1394 and 58 (2020), pp. 2193-2211], the first part of this paper addresses the open question concerning the distribution of the eigenvalues of B-1nAnformulated at the end of the second paper. The approximation of the spectrum studied in the present paper differs from the eigenvalue problem studied in the classical PDE literature which addresses individual eigenvalues of compact (solution) operators.In the second part of this paper, we generalize some of our results to general bounded and self-adjoint operators A,B:VRIGHTWARDS ARROWV#, where V# denotes the dual of V. More specifically, provided that B is coercive and that the standard Galerkin discretization approximation properties hold, we prove that the whole spectrum of B-1A:VRIGHTWARDS ARROWV is approximated to an arbitrary accuracy by the eigenvalues of its finite dimensional discretization B-1nAn.
Název v anglickém jazyce
Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning
Popis výsledku anglicky
We consider operator preconditioning B-1A, which is employed in the numerical solution of boundary value problems. Here, the self-adjoint operators A,B:H10(Ω)RIGHTWARDS ARROWH-1(Ω) are the standard integral/functional representations of the partial differential operators -NABLADOT OPERATOR (k(x)NABLAu) and -NABLADOT OPERATOR (g(x)NABLAu), respectively, and the scalar coefficient functions k(x) and g(x) are assumed to be continuous throughout the closure of the solution domain. The function g(x) is also assumed to be uniformly positive. When the discretized problem, with the preconditioned operator B-1nAn, is solved with Krylov subspace methods, the convergence behavior depends on the distribution of the eigenvalues. Therefore, it is crucial to understand how the eigenvalues of B-1nAn are related to the spectrum of B-1A. Following the path started in the two recent papers published in SIAM J. Numer. Anal. [57 (2019), pp. 1369-1394 and 58 (2020), pp. 2193-2211], the first part of this paper addresses the open question concerning the distribution of the eigenvalues of B-1nAnformulated at the end of the second paper. The approximation of the spectrum studied in the present paper differs from the eigenvalue problem studied in the classical PDE literature which addresses individual eigenvalues of compact (solution) operators.In the second part of this paper, we generalize some of our results to general bounded and self-adjoint operators A,B:VRIGHTWARDS ARROWV#, where V# denotes the dual of V. More specifically, provided that B is coercive and that the standard Galerkin discretization approximation properties hold, we prove that the whole spectrum of B-1A:VRIGHTWARDS ARROWV is approximated to an arbitrary accuracy by the eigenvalues of its finite dimensional discretization B-1nAn.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
91
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
301-325
Kód UT WoS článku
000804491400001
EID výsledku v databázi Scopus
2-s2.0-85131295247