Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453564" target="_blank" >RIV/00216208:11320/22:10453564 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eQQhtaSMPX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eQQhtaSMPX</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11075-022-01263-5" target="_blank" >10.1007/s11075-022-01263-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning

  • Popis výsledku v původním jazyce

    We consider operator preconditioning B-1A, which is employed in the numerical solution of boundary value problems. Here, the self-adjoint operators A,B:H10(Ω)RIGHTWARDS ARROWH-1(Ω) are the standard integral/functional representations of the partial differential operators -NABLADOT OPERATOR   (k(x)NABLAu) and -NABLADOT OPERATOR   (g(x)NABLAu), respectively, and the scalar coefficient functions k(x) and g(x) are assumed to be continuous throughout the closure of the solution domain. The function g(x) is also assumed to be uniformly positive. When the discretized problem, with the preconditioned operator B-1nAn, is solved with Krylov subspace methods, the convergence behavior depends on the distribution of the eigenvalues. Therefore, it is crucial to understand how the eigenvalues of B-1nAn are related to the spectrum of B-1A. Following the path started in the two recent papers published in SIAM J. Numer. Anal. [57 (2019), pp. 1369-1394 and 58 (2020), pp. 2193-2211], the first part of this paper addresses the open question concerning the distribution of the eigenvalues of B-1nAnformulated at the end of the second paper. The approximation of the spectrum studied in the present paper differs from the eigenvalue problem studied in the classical PDE literature which addresses individual eigenvalues of compact (solution) operators.In the second part of this paper, we generalize some of our results to general bounded and self-adjoint operators A,B:VRIGHTWARDS ARROWV#, where V# denotes the dual of V. More specifically, provided that B is coercive and that the standard Galerkin discretization approximation properties hold, we prove that the whole spectrum of B-1A:VRIGHTWARDS ARROWV is approximated to an arbitrary accuracy by the eigenvalues of its finite dimensional discretization B-1nAn.

  • Název v anglickém jazyce

    Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning

  • Popis výsledku anglicky

    We consider operator preconditioning B-1A, which is employed in the numerical solution of boundary value problems. Here, the self-adjoint operators A,B:H10(Ω)RIGHTWARDS ARROWH-1(Ω) are the standard integral/functional representations of the partial differential operators -NABLADOT OPERATOR   (k(x)NABLAu) and -NABLADOT OPERATOR   (g(x)NABLAu), respectively, and the scalar coefficient functions k(x) and g(x) are assumed to be continuous throughout the closure of the solution domain. The function g(x) is also assumed to be uniformly positive. When the discretized problem, with the preconditioned operator B-1nAn, is solved with Krylov subspace methods, the convergence behavior depends on the distribution of the eigenvalues. Therefore, it is crucial to understand how the eigenvalues of B-1nAn are related to the spectrum of B-1A. Following the path started in the two recent papers published in SIAM J. Numer. Anal. [57 (2019), pp. 1369-1394 and 58 (2020), pp. 2193-2211], the first part of this paper addresses the open question concerning the distribution of the eigenvalues of B-1nAnformulated at the end of the second paper. The approximation of the spectrum studied in the present paper differs from the eigenvalue problem studied in the classical PDE literature which addresses individual eigenvalues of compact (solution) operators.In the second part of this paper, we generalize some of our results to general bounded and self-adjoint operators A,B:VRIGHTWARDS ARROWV#, where V# denotes the dual of V. More specifically, provided that B is coercive and that the standard Galerkin discretization approximation properties hold, we prove that the whole spectrum of B-1A:VRIGHTWARDS ARROWV is approximated to an arbitrary accuracy by the eigenvalues of its finite dimensional discretization B-1nAn.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Algorithms

  • ISSN

    1017-1398

  • e-ISSN

  • Svazek periodika

    91

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    25

  • Strana od-do

    301-325

  • Kód UT WoS článku

    000804491400001

  • EID výsledku v databázi Scopus

    2-s2.0-85131295247