Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00505754" target="_blank" >RIV/67985807:_____/19:00505754 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10397880
Výsledek na webu
<a href="http://dx.doi.org/10.1137/18M1212458" target="_blank" >http://dx.doi.org/10.1137/18M1212458</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/18M1212458" target="_blank" >10.1137/18M1212458</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator
Popis výsledku v původním jazyce
In [IMA J. Numer. Anal., 29 (2009), pp. 24--42], Nielsen, Tveito, and Hackbusch study the operator generated by using the inverse of the Laplacian as the preconditioner for second order elliptic PDEs $- abla cdot (k(x) abla u) = f$. They prove that the range of $k(x)$ is contained in the spectrum of the preconditioned operator, provided that $k(x)$ is continuous. Their rigorous analysis only addresses mappings defined on infinite dimensional spaces, but the numerical experiments in the paper suggest that a similar property holds in the discrete case. Motivated by this investigation, we analyze the eigenvalues of the matrix ${L}^{-1}{A}$, where ${L}$ and ${{A}}$ are the stiffness matrices associated with the Laplace operator and second order elliptic operators with a scalar coefficient function, respectively. Using only technical assumptions on $k(x)$, we prove the existence of a one-to-one pairing between the eigenvalues of ${L}^{-1}{A}$ and the intervals determined by the images under $k(x)$ of the supports of the finite element nodal basis functions. As a consequence, we can show that the nodal values of $k(x)$ yield accurate approximations of the eigenvalues of ${L}^{-1}{A}$. Our theoretical results, including their relevance for understanding how the convergence of the conjugate gradient method may depend on the whole spectrum of the preconditioned matrix, are illuminated by several numerical experiments.
Název v anglickém jazyce
Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator
Popis výsledku anglicky
In [IMA J. Numer. Anal., 29 (2009), pp. 24--42], Nielsen, Tveito, and Hackbusch study the operator generated by using the inverse of the Laplacian as the preconditioner for second order elliptic PDEs $- abla cdot (k(x) abla u) = f$. They prove that the range of $k(x)$ is contained in the spectrum of the preconditioned operator, provided that $k(x)$ is continuous. Their rigorous analysis only addresses mappings defined on infinite dimensional spaces, but the numerical experiments in the paper suggest that a similar property holds in the discrete case. Motivated by this investigation, we analyze the eigenvalues of the matrix ${L}^{-1}{A}$, where ${L}$ and ${{A}}$ are the stiffness matrices associated with the Laplace operator and second order elliptic operators with a scalar coefficient function, respectively. Using only technical assumptions on $k(x)$, we prove the existence of a one-to-one pairing between the eigenvalues of ${L}^{-1}{A}$ and the intervals determined by the images under $k(x)$ of the supports of the finite element nodal basis functions. As a consequence, we can show that the nodal values of $k(x)$ yield accurate approximations of the eigenvalues of ${L}^{-1}{A}$. Our theoretical results, including their relevance for understanding how the convergence of the conjugate gradient method may depend on the whole spectrum of the preconditioned matrix, are illuminated by several numerical experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Numerical Analysis
ISSN
0036-1429
e-ISSN
—
Svazek periodika
57
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
1369-1394
Kód UT WoS článku
000473085400017
EID výsledku v databázi Scopus
2-s2.0-85069917331