Síťově nezávislé superlineární PCG poměry prostřednictvím kompaktně ekvivalentních operátorů
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F07%3A00316462" target="_blank" >RIV/68145535:_____/07:00316462 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mesh independent superlinear PCG rates via compact - equivalent operators
Popis výsledku v původním jazyce
The subject of the paper is the mesh independent convergence of the preconditioned conjugate gradient (PCG) method for nonsymmetric elliptic problems. The approach of equivalent operators is involved, in which one uses the discretization of another suitable elliptic operator as preconditioning matrix. By introducing the notion of compact-equivalent operators, it is proved that for a wide class of elliptic problems the superlinear convergence of the obtained PCG method is mesh independent under finite element discretizations; that is, the rate of superlinear convergence is given in the form of a sequence which is mesh independent and is determined only by the elliptic operators.
Název v anglickém jazyce
Mesh independent superlinear PCG rates via compact - equivalent operators
Popis výsledku anglicky
The subject of the paper is the mesh independent convergence of the preconditioned conjugate gradient (PCG) method for nonsymmetric elliptic problems. The approach of equivalent operators is involved, in which one uses the discretization of another suitable elliptic operator as preconditioning matrix. By introducing the notion of compact-equivalent operators, it is proved that for a wide class of elliptic problems the superlinear convergence of the obtained PCG method is mesh independent under finite element discretizations; that is, the rate of superlinear convergence is given in the form of a sequence which is mesh independent and is determined only by the elliptic operators.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Numerical Analysis
ISSN
0036-1429
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000249319000007
EID výsledku v databázi Scopus
—