Spectra of Elliptic Operators on Quantum Graphs with Small Edges
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018608" target="_blank" >RIV/62690094:18470/21:50018608 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/9/16/1874" target="_blank" >https://www.mdpi.com/2227-7390/9/16/1874</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9161874" target="_blank" >10.3390/math9161874</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectra of Elliptic Operators on Quantum Graphs with Small Edges
Popis výsledku v původním jazyce
We consider a general second order self-adjoint elliptic operator on an arbitrary metric graph, to which a small graph is glued. This small graph is obtained via rescaling a given fixed graph gamma by a small positive parameter epsilon. The coefficients in the differential expression are varying, and they, as well as the matrices in the boundary conditions, can also depend on epsilon and we assume that this dependence is analytic. We introduce a special operator on a certain extension of the graph gamma and assume that this operator has no embedded eigenvalues at the threshold of its essential spectrum. It is known that under such assumption the perturbed operator converges to a certain limiting operator. Our main results establish the convergence of the spectrum of the perturbed operator to that of the limiting operator. The convergence of the spectral projectors is proved as well. We show that the eigenvalues of the perturbed operator converging to limiting discrete eigenvalues are analytic in epsilon and the same is true for the associated perturbed eigenfunctions. We provide an effective recurrent algorithm for determining all coefficients in the Taylor series for the perturbed eigenvalues and eigenfunctions.
Název v anglickém jazyce
Spectra of Elliptic Operators on Quantum Graphs with Small Edges
Popis výsledku anglicky
We consider a general second order self-adjoint elliptic operator on an arbitrary metric graph, to which a small graph is glued. This small graph is obtained via rescaling a given fixed graph gamma by a small positive parameter epsilon. The coefficients in the differential expression are varying, and they, as well as the matrices in the boundary conditions, can also depend on epsilon and we assume that this dependence is analytic. We introduce a special operator on a certain extension of the graph gamma and assume that this operator has no embedded eigenvalues at the threshold of its essential spectrum. It is known that under such assumption the perturbed operator converges to a certain limiting operator. Our main results establish the convergence of the spectrum of the perturbed operator to that of the limiting operator. The convergence of the spectral projectors is proved as well. We show that the eigenvalues of the perturbed operator converging to limiting discrete eigenvalues are analytic in epsilon and the same is true for the associated perturbed eigenfunctions. We provide an effective recurrent algorithm for determining all coefficients in the Taylor series for the perturbed eigenvalues and eigenfunctions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MATHEMATICS
ISSN
2227-7390
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
"Article Number: 1874"
Kód UT WoS článku
000689404600001
EID výsledku v databázi Scopus
2-s2.0-85112396760