Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analyticity of resolvents of elliptic operators on quantum graphs with small edges

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50018616" target="_blank" >RIV/62690094:18470/22:50018616 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0001870821005648?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0001870821005648?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2021.108125" target="_blank" >10.1016/j.aim.2021.108125</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analyticity of resolvents of elliptic operators on quantum graphs with small edges

  • Popis výsledku v původním jazyce

    We consider an arbitrary metric graph, to which we glue another graph with edges of lengths proportional to ε, where ε is a small positive parameter. On such graph, we consider a general self-adjoint second order differential operator Hε with varying coefficients subject to general vertex conditions; all coefficients in differential expression and vertex conditions are supposed to be analytic in ε. We introduce a special operator on a certain graph obtained by rescaling the aforementioned small edges and assume that it has no embedded eigenvalues at the threshold of its essential spectrum. Under such assumption, we show that certain parts of the resolvent of Hε are analytic in ε. This allows us to represent the resolvent of Hε by a uniformly converging Taylor-like series and its partial sums can be used for approximating the resolvent up to an arbitrary power of ε. In particular, the zero-order approximation reproduces recent convergence results by G. Berkolaiko, Yu. Latushkin, S. Sukhtaiev and by C. Cacciapuoti, but we additionally show that next-to-leading terms in ε-expansions of the coefficients in the differential expression and vertex conditions can contribute to the limiting operator producing the Robin part at the vertices, to which small edges are incident. We also discuss possible generalizations of our model including both the cases of a more general geometry of the small parts of the graph and a non-analytic ε-dependence of the coefficients in the differential expression and vertex conditions. © 2021 Elsevier Inc.

  • Název v anglickém jazyce

    Analyticity of resolvents of elliptic operators on quantum graphs with small edges

  • Popis výsledku anglicky

    We consider an arbitrary metric graph, to which we glue another graph with edges of lengths proportional to ε, where ε is a small positive parameter. On such graph, we consider a general self-adjoint second order differential operator Hε with varying coefficients subject to general vertex conditions; all coefficients in differential expression and vertex conditions are supposed to be analytic in ε. We introduce a special operator on a certain graph obtained by rescaling the aforementioned small edges and assume that it has no embedded eigenvalues at the threshold of its essential spectrum. Under such assumption, we show that certain parts of the resolvent of Hε are analytic in ε. This allows us to represent the resolvent of Hε by a uniformly converging Taylor-like series and its partial sums can be used for approximating the resolvent up to an arbitrary power of ε. In particular, the zero-order approximation reproduces recent convergence results by G. Berkolaiko, Yu. Latushkin, S. Sukhtaiev and by C. Cacciapuoti, but we additionally show that next-to-leading terms in ε-expansions of the coefficients in the differential expression and vertex conditions can contribute to the limiting operator producing the Robin part at the vertices, to which small edges are incident. We also discuss possible generalizations of our model including both the cases of a more general geometry of the small parts of the graph and a non-analytic ε-dependence of the coefficients in the differential expression and vertex conditions. © 2021 Elsevier Inc.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in mathematics

  • ISSN

    0001-8708

  • e-ISSN

    1090-2082

  • Svazek periodika

    397

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    48

  • Strana od-do

    "Article number: 108125"

  • Kód UT WoS článku

    000793112500018

  • EID výsledku v databázi Scopus

    2-s2.0-85119352959