Analyticity of resolvents of elliptic operators on quantum graphs with small edges
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50018616" target="_blank" >RIV/62690094:18470/22:50018616 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0001870821005648?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0001870821005648?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2021.108125" target="_blank" >10.1016/j.aim.2021.108125</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyticity of resolvents of elliptic operators on quantum graphs with small edges
Popis výsledku v původním jazyce
We consider an arbitrary metric graph, to which we glue another graph with edges of lengths proportional to ε, where ε is a small positive parameter. On such graph, we consider a general self-adjoint second order differential operator Hε with varying coefficients subject to general vertex conditions; all coefficients in differential expression and vertex conditions are supposed to be analytic in ε. We introduce a special operator on a certain graph obtained by rescaling the aforementioned small edges and assume that it has no embedded eigenvalues at the threshold of its essential spectrum. Under such assumption, we show that certain parts of the resolvent of Hε are analytic in ε. This allows us to represent the resolvent of Hε by a uniformly converging Taylor-like series and its partial sums can be used for approximating the resolvent up to an arbitrary power of ε. In particular, the zero-order approximation reproduces recent convergence results by G. Berkolaiko, Yu. Latushkin, S. Sukhtaiev and by C. Cacciapuoti, but we additionally show that next-to-leading terms in ε-expansions of the coefficients in the differential expression and vertex conditions can contribute to the limiting operator producing the Robin part at the vertices, to which small edges are incident. We also discuss possible generalizations of our model including both the cases of a more general geometry of the small parts of the graph and a non-analytic ε-dependence of the coefficients in the differential expression and vertex conditions. © 2021 Elsevier Inc.
Název v anglickém jazyce
Analyticity of resolvents of elliptic operators on quantum graphs with small edges
Popis výsledku anglicky
We consider an arbitrary metric graph, to which we glue another graph with edges of lengths proportional to ε, where ε is a small positive parameter. On such graph, we consider a general self-adjoint second order differential operator Hε with varying coefficients subject to general vertex conditions; all coefficients in differential expression and vertex conditions are supposed to be analytic in ε. We introduce a special operator on a certain graph obtained by rescaling the aforementioned small edges and assume that it has no embedded eigenvalues at the threshold of its essential spectrum. Under such assumption, we show that certain parts of the resolvent of Hε are analytic in ε. This allows us to represent the resolvent of Hε by a uniformly converging Taylor-like series and its partial sums can be used for approximating the resolvent up to an arbitrary power of ε. In particular, the zero-order approximation reproduces recent convergence results by G. Berkolaiko, Yu. Latushkin, S. Sukhtaiev and by C. Cacciapuoti, but we additionally show that next-to-leading terms in ε-expansions of the coefficients in the differential expression and vertex conditions can contribute to the limiting operator producing the Robin part at the vertices, to which small edges are incident. We also discuss possible generalizations of our model including both the cases of a more general geometry of the small parts of the graph and a non-analytic ε-dependence of the coefficients in the differential expression and vertex conditions. © 2021 Elsevier Inc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in mathematics
ISSN
0001-8708
e-ISSN
1090-2082
Svazek periodika
397
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
48
Strana od-do
"Article number: 108125"
Kód UT WoS článku
000793112500018
EID výsledku v databázi Scopus
2-s2.0-85119352959