MATRICES OF OPTIMAL TREE-DEPTH AND A ROW-INVARIANT PARAMETERIZED ALGORITHM FOR INTEGER PROGRAMMING
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455466" target="_blank" >RIV/00216208:11320/22:10455466 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/22:00126436
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OhD0NJ4S9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OhD0NJ4S9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1353502" target="_blank" >10.1137/20M1353502</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MATRICES OF OPTIMAL TREE-DEPTH AND A ROW-INVARIANT PARAMETERIZED ALGORITHM FOR INTEGER PROGRAMMING
Popis výsledku v původním jazyce
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry Δ are solvable in time g(d, Δ )poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual treedepth. Finally, we use these results to obtain an algorithm for integer programming running in time g(dASTERISK OPERATOR, Δ )poly(n) where dASTERISK OPERATOR is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.
Název v anglickém jazyce
MATRICES OF OPTIMAL TREE-DEPTH AND A ROW-INVARIANT PARAMETERIZED ALGORITHM FOR INTEGER PROGRAMMING
Popis výsledku anglicky
A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with dual tree-depth d and largest entry Δ are solvable in time g(d, Δ )poly(n) for some function g. However, the dual tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth, and thus does not reflect its geometric structure. We prove that the minimum dual tree-depth of a row-equivalent matrix is equal to the branch-depth of the matroid defined by the columns of the matrix. We design a fixed parameter algorithm for computing branch-depth of matroids represented over a finite field and a fixed parameter algorithm for computing a row-equivalent matrix with minimum dual treedepth. Finally, we use these results to obtain an algorithm for integer programming running in time g(dASTERISK OPERATOR, Δ )poly(n) where dASTERISK OPERATOR is the branch-depth of the constraint matrix; the branch-depth cannot be replaced by the more permissive notion of branch-width.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Computing
ISSN
0097-5397
e-ISSN
1095-7111
Svazek periodika
51
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
664-670
Kód UT WoS článku
001130401900013
EID výsledku v databázi Scopus
2-s2.0-85132215614