The Z2 -Genus of Kuratowski Minors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455550" target="_blank" >RIV/00216208:11320/22:10455550 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=28eR2hGVm3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=28eR2hGVm3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-022-00412-w" target="_blank" >10.1007/s00454-022-00412-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Z2 -Genus of Kuratowski Minors
Popis výsledku v původním jazyce
A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t x t grid or one of the following so-called t-Kuratowski graphs: K_{3,t}, or t copies of K_5 or K_{3,3} sharing at most two common vertices. We show that the Z2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2-genus of graphs.
Název v anglickém jazyce
The Z2 -Genus of Kuratowski Minors
Popis výsledku anglicky
A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t x t grid or one of the following so-called t-Kuratowski graphs: K_{3,t}, or t copies of K_5 or K_{3,3} sharing at most two common vertices. We show that the Z2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2-genus of graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
425-447
Kód UT WoS článku
000825014500001
EID výsledku v databázi Scopus
2-s2.0-85133643436