Characteristics of learning tasks in accounting textbooks: an AI assisted analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AUVXHVCEI" target="_blank" >RIV/00216208:11320/22:UVXHVCEI - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1186/s40461-022-00138-2" target="_blank" >https://doi.org/10.1186/s40461-022-00138-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s40461-022-00138-2" target="_blank" >10.1186/s40461-022-00138-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characteristics of learning tasks in accounting textbooks: an AI assisted analysis
Popis výsledku v původním jazyce
Tasks in accounting textbooks play a vital role when it comes to learning processes. However, hardly any empirical evidence on the quality of accounting tasks exists regarding accounting-relevant characteristics. This is why a new category system containing accounting-relevant aspects was developed to analyze a total of 3,361 tasks from 14 different German accounting textbooks. Descriptive analysis and correlation analysis were performed to assess task characteristics and identify relationships between categories. In addition, in light of the large number of tasks to be analyzed, AI assisted the content analysis, and its usefulness was evaluated. The results indicate that tasks are not sufficiently able to instill accounting competencies such as interpreting data, assessing the relevance of information, or identifying and solving underlying accounting problems. The findings further show that AI and human coding yield similar results in most categories, suggesting that AI assistance is useful for content analysis when evaluating a large number of tasks.
Název v anglickém jazyce
Characteristics of learning tasks in accounting textbooks: an AI assisted analysis
Popis výsledku anglicky
Tasks in accounting textbooks play a vital role when it comes to learning processes. However, hardly any empirical evidence on the quality of accounting tasks exists regarding accounting-relevant characteristics. This is why a new category system containing accounting-relevant aspects was developed to analyze a total of 3,361 tasks from 14 different German accounting textbooks. Descriptive analysis and correlation analysis were performed to assess task characteristics and identify relationships between categories. In addition, in light of the large number of tasks to be analyzed, AI assisted the content analysis, and its usefulness was evaluated. The results indicate that tasks are not sufficiently able to instill accounting competencies such as interpreting data, assessing the relevance of information, or identifying and solving underlying accounting problems. The findings further show that AI and human coding yield similar results in most categories, suggesting that AI assistance is useful for content analysis when evaluating a large number of tasks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Empirical Research in Vocational Education and Training [online]
ISSN
1877-6345
e-ISSN
1877-6345
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
1-33
Kód UT WoS článku
000882374000001
EID výsledku v databázi Scopus
2-s2.0-85141659186