A NEW DEFINITION OF RANDOM SET
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472090" target="_blank" >RIV/00216208:11320/23:10472090 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/23:00372776
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hsTRprssEl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=hsTRprssEl</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3336/gm.58.1.10" target="_blank" >10.3336/gm.58.1.10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A NEW DEFINITION OF RANDOM SET
Popis výsledku v původním jazyce
. A new definition of random sets is proposed in the presented paper. It is based on a special distance in a measurable space and uses negative definite kernels for continuation from the initial space to the one of the random sets. Motivation for introducing the new definition is that the classical approach deals with Hausdorff distance between realisations of the random sets, which is not satisfactory for statistical analysis in many cases. We place the realisations of the random sets in a complete Boolean algebra (B.A.) endowed with a positive finite measure intended to capture important characteristics of the realisations. A distance on B.A. is introduced as a square root of measure of symmetric difference between its two elements. The distance is then used to define a class of Borel subsets of B.A. Consequently, random sets are defined as measurable mappings taking values in the B.A. This approach enables us to use more general family of distances between realisations of random sets which allows us to make new statistical tests concerning equality of some characteristics of random set distributions. As an extra result, the notion of stability of newly defined random sets with respect to intersections is proposed and limit theorems are obtained.
Název v anglickém jazyce
A NEW DEFINITION OF RANDOM SET
Popis výsledku anglicky
. A new definition of random sets is proposed in the presented paper. It is based on a special distance in a measurable space and uses negative definite kernels for continuation from the initial space to the one of the random sets. Motivation for introducing the new definition is that the classical approach deals with Hausdorff distance between realisations of the random sets, which is not satisfactory for statistical analysis in many cases. We place the realisations of the random sets in a complete Boolean algebra (B.A.) endowed with a positive finite measure intended to capture important characteristics of the realisations. A distance on B.A. is introduced as a square root of measure of symmetric difference between its two elements. The distance is then used to define a class of Borel subsets of B.A. Consequently, random sets are defined as measurable mappings taking values in the B.A. This approach enables us to use more general family of distances between realisations of random sets which allows us to make new statistical tests concerning equality of some characteristics of random set distributions. As an extra result, the notion of stability of newly defined random sets with respect to intersections is proposed and limit theorems are obtained.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Glasnik Matematicki
ISSN
0017-095X
e-ISSN
1846-7989
Svazek periodika
58
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
HR - Chorvatská republika
Počet stran výsledku
20
Strana od-do
135-154
Kód UT WoS článku
001019706500010
EID výsledku v databázi Scopus
2-s2.0-85163664007