Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

THE PHASE TRANSITION OF DISCREPANCY IN RANDOM HYPERGRAPHS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473965" target="_blank" >RIV/00216208:11320/23:10473965 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OqAHyfWnwN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OqAHyfWnwN</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/21M1451427" target="_blank" >10.1137/21M1451427</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    THE PHASE TRANSITION OF DISCREPANCY IN RANDOM HYPERGRAPHS

  • Popis výsledku v původním jazyce

    Motivated by the Beck-Fiala conjecture, we study the discrepancy problem in two related models of random hypergraphs on n vertices and m edges. In the first model, each of the m edges is constructed by placing each vertex into the edge independently with probability d/m, where d is a parameter satisfying d -&gt; infinity and dn/m -&gt; infinity. In the second model, each vertex independently chooses a subset of d edge labels from [m] uniformly at random. Edge i is then defined to be exactly those vertices whose d-subsets include label i. In the sparse regime, i.e., when m = O(n), we show that with high probability a random hypergraph from either model has discrepancy at least Omega(2(-n/m) root dn/m). In the dense regime, i.e., when m &gt;&gt; n, we show that with high probability a random hypergraph from either model has discrepancy at least Omega(root(dn/m) log gamma), where gamma = min{m/n, dn/m}. Furthermore, we obtain nearly matching asymptotic upper bounds on the discrepancy. Specifically, we apply the partial coloring lemma of Lovett and Meka to show that, in the dense regime, with high probability the two random hypergraph models each have discrepancy O(root dn/m log(m/n)). In fact, in a significant parameter range we can tighten our analysis to get an upper bound which matches our lower bound up to a constant factor. This result is algorithmic, and together with the work of Bansal and Meka [On the discrepancy of random low degree set systems, in Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp. 2557-2564] characterizes how the discrepancy of each random hypergraph transitions from Theta (surd d) to o(surd d) as m increases from m= Theta (n) to m &gt;&gt; n.

  • Název v anglickém jazyce

    THE PHASE TRANSITION OF DISCREPANCY IN RANDOM HYPERGRAPHS

  • Popis výsledku anglicky

    Motivated by the Beck-Fiala conjecture, we study the discrepancy problem in two related models of random hypergraphs on n vertices and m edges. In the first model, each of the m edges is constructed by placing each vertex into the edge independently with probability d/m, where d is a parameter satisfying d -&gt; infinity and dn/m -&gt; infinity. In the second model, each vertex independently chooses a subset of d edge labels from [m] uniformly at random. Edge i is then defined to be exactly those vertices whose d-subsets include label i. In the sparse regime, i.e., when m = O(n), we show that with high probability a random hypergraph from either model has discrepancy at least Omega(2(-n/m) root dn/m). In the dense regime, i.e., when m &gt;&gt; n, we show that with high probability a random hypergraph from either model has discrepancy at least Omega(root(dn/m) log gamma), where gamma = min{m/n, dn/m}. Furthermore, we obtain nearly matching asymptotic upper bounds on the discrepancy. Specifically, we apply the partial coloring lemma of Lovett and Meka to show that, in the dense regime, with high probability the two random hypergraph models each have discrepancy O(root dn/m log(m/n)). In fact, in a significant parameter range we can tighten our analysis to get an upper bound which matches our lower bound up to a constant factor. This result is algorithmic, and together with the work of Bansal and Meka [On the discrepancy of random low degree set systems, in Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp. 2557-2564] characterizes how the discrepancy of each random hypergraph transitions from Theta (surd d) to o(surd d) as m increases from m= Theta (n) to m &gt;&gt; n.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

    1095-7146

  • Svazek periodika

    37

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    1818-1841

  • Kód UT WoS článku

    001071676800016

  • EID výsledku v databázi Scopus

    2-s2.0-85171614345