THE PHASE TRANSITION OF DISCREPANCY IN RANDOM HYPERGRAPHS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473965" target="_blank" >RIV/00216208:11320/23:10473965 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OqAHyfWnwN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OqAHyfWnwN</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1451427" target="_blank" >10.1137/21M1451427</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
THE PHASE TRANSITION OF DISCREPANCY IN RANDOM HYPERGRAPHS
Popis výsledku v původním jazyce
Motivated by the Beck-Fiala conjecture, we study the discrepancy problem in two related models of random hypergraphs on n vertices and m edges. In the first model, each of the m edges is constructed by placing each vertex into the edge independently with probability d/m, where d is a parameter satisfying d -> infinity and dn/m -> infinity. In the second model, each vertex independently chooses a subset of d edge labels from [m] uniformly at random. Edge i is then defined to be exactly those vertices whose d-subsets include label i. In the sparse regime, i.e., when m = O(n), we show that with high probability a random hypergraph from either model has discrepancy at least Omega(2(-n/m) root dn/m). In the dense regime, i.e., when m >> n, we show that with high probability a random hypergraph from either model has discrepancy at least Omega(root(dn/m) log gamma), where gamma = min{m/n, dn/m}. Furthermore, we obtain nearly matching asymptotic upper bounds on the discrepancy. Specifically, we apply the partial coloring lemma of Lovett and Meka to show that, in the dense regime, with high probability the two random hypergraph models each have discrepancy O(root dn/m log(m/n)). In fact, in a significant parameter range we can tighten our analysis to get an upper bound which matches our lower bound up to a constant factor. This result is algorithmic, and together with the work of Bansal and Meka [On the discrepancy of random low degree set systems, in Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp. 2557-2564] characterizes how the discrepancy of each random hypergraph transitions from Theta (surd d) to o(surd d) as m increases from m= Theta (n) to m >> n.
Název v anglickém jazyce
THE PHASE TRANSITION OF DISCREPANCY IN RANDOM HYPERGRAPHS
Popis výsledku anglicky
Motivated by the Beck-Fiala conjecture, we study the discrepancy problem in two related models of random hypergraphs on n vertices and m edges. In the first model, each of the m edges is constructed by placing each vertex into the edge independently with probability d/m, where d is a parameter satisfying d -> infinity and dn/m -> infinity. In the second model, each vertex independently chooses a subset of d edge labels from [m] uniformly at random. Edge i is then defined to be exactly those vertices whose d-subsets include label i. In the sparse regime, i.e., when m = O(n), we show that with high probability a random hypergraph from either model has discrepancy at least Omega(2(-n/m) root dn/m). In the dense regime, i.e., when m >> n, we show that with high probability a random hypergraph from either model has discrepancy at least Omega(root(dn/m) log gamma), where gamma = min{m/n, dn/m}. Furthermore, we obtain nearly matching asymptotic upper bounds on the discrepancy. Specifically, we apply the partial coloring lemma of Lovett and Meka to show that, in the dense regime, with high probability the two random hypergraph models each have discrepancy O(root dn/m log(m/n)). In fact, in a significant parameter range we can tighten our analysis to get an upper bound which matches our lower bound up to a constant factor. This result is algorithmic, and together with the work of Bansal and Meka [On the discrepancy of random low degree set systems, in Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp. 2557-2564] characterizes how the discrepancy of each random hypergraph transitions from Theta (surd d) to o(surd d) as m increases from m= Theta (n) to m >> n.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
1095-7146
Svazek periodika
37
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
1818-1841
Kód UT WoS článku
001071676800016
EID výsledku v databázi Scopus
2-s2.0-85171614345