Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Exact Computation of Tukey Depth Central Regions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10472949" target="_blank" >RIV/00216208:11320/24:10472949 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=US989TMV_2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=US989TMV_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10618600.2023.2257781" target="_blank" >10.1080/10618600.2023.2257781</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Exact Computation of Tukey Depth Central Regions

  • Popis výsledku v původním jazyce

    The Tukey (or halfspace) depth extends nonparametric methods toward multivariate data. The multivariate analogues of the quantiles are the central regions of the Tukey depth, defined as sets of points in the d-dimensional space whose Tukey depth exceeds given thresholds k. We address the problem of fast and exact computation of those central regions. First, we analyze an efficient Algorithm (A) from Liu, Mosler, and Mozharovskyi, and prove that it yields exact results in dimension d = 2, or for a low threshold k in arbitrary dimension. We provide examples where Algorithm (A) fails to recover the exact Tukey depth region for d &gt; 2, and propose a modification that is guaranteed to be exact. We express the problem of computing the exact central region in its dual formulation, and use that viewpoint to demonstrate that further substantial improvements to our algorithm are unlikely. An efficient C++ implementation of our exact algorithm is freely available in the R package TukeyRegion.

  • Název v anglickém jazyce

    On Exact Computation of Tukey Depth Central Regions

  • Popis výsledku anglicky

    The Tukey (or halfspace) depth extends nonparametric methods toward multivariate data. The multivariate analogues of the quantiles are the central regions of the Tukey depth, defined as sets of points in the d-dimensional space whose Tukey depth exceeds given thresholds k. We address the problem of fast and exact computation of those central regions. First, we analyze an efficient Algorithm (A) from Liu, Mosler, and Mozharovskyi, and prove that it yields exact results in dimension d = 2, or for a low threshold k in arbitrary dimension. We provide examples where Algorithm (A) fails to recover the exact Tukey depth region for d &gt; 2, and propose a modification that is guaranteed to be exact. We express the problem of computing the exact central region in its dual formulation, and use that viewpoint to demonstrate that further substantial improvements to our algorithm are unlikely. An efficient C++ implementation of our exact algorithm is freely available in the R package TukeyRegion.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Computational and Graphical Statistics

  • ISSN

    1061-8600

  • e-ISSN

    1537-2715

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    699-713

  • Kód UT WoS článku

    001122849600001

  • EID výsledku v databázi Scopus

    2-s2.0-85177442788