Flat Mittag-Leffler Modules, and Their Relative and Restricted Versions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488126" target="_blank" >RIV/00216208:11320/24:10488126 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-53063-0" target="_blank" >http://dx.doi.org/10.1007/978-3-031-53063-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-53063-0" target="_blank" >10.1007/978-3-031-53063-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flat Mittag-Leffler Modules, and Their Relative and Restricted Versions
Popis výsledku v původním jazyce
Assume that. R is a non-right perfect ring. Then there is a proper class ofclasses of (right .R-) modules closed under transfinite extensions lying between theclasses.P0 of projective modules, and.F0 of flat modules. These classes can be definedas variants of the class .F M of absolute flat Mittag-Leffler modules: either as theirrestricted versions (lying between.P0 and.F M), or their relative versions (between.F M and.F0). In this survey, we will deal with applications of these classes in relativehomological algebra and algebraic geometry. The classes .P0 and .F0 are known toprovide for approximations, and minimal approximations, respectively. We will showthat the classes of restricted flat Mittag-Leffler modules, and flat relative MittagLeffler modules, have rather different approximation properties: the former classesalways provide for approximations, but the latter do not, except for the boundary caseof .F0. The notion of an (infinite dimensional) vector bundle is known to be Zariskilocal for all schemes, the key point of the proof being that projectivity ascends anddescends along flat and faithfully flat ring homomorphisms, respectively. We willsee that the same holds for the properties of being a .κ-restricted flat Mittag-Lefflermodule for each cardinal.κ >= ℵ0, and also a flat.Q-Mittag-Leffler module whenever.Q is a definable class of finite type. Thus, as in the model case of vector bundles,Zariski locality holds for flat quasi-coherent sheaves induced by each of these classesof modules. Moreover, we will see that the notion of a locally.n-tilting quasi-coherentsheaf is Zariski local for all.n >= 0.
Název v anglickém jazyce
Flat Mittag-Leffler Modules, and Their Relative and Restricted Versions
Popis výsledku anglicky
Assume that. R is a non-right perfect ring. Then there is a proper class ofclasses of (right .R-) modules closed under transfinite extensions lying between theclasses.P0 of projective modules, and.F0 of flat modules. These classes can be definedas variants of the class .F M of absolute flat Mittag-Leffler modules: either as theirrestricted versions (lying between.P0 and.F M), or their relative versions (between.F M and.F0). In this survey, we will deal with applications of these classes in relativehomological algebra and algebraic geometry. The classes .P0 and .F0 are known toprovide for approximations, and minimal approximations, respectively. We will showthat the classes of restricted flat Mittag-Leffler modules, and flat relative MittagLeffler modules, have rather different approximation properties: the former classesalways provide for approximations, but the latter do not, except for the boundary caseof .F0. The notion of an (infinite dimensional) vector bundle is known to be Zariskilocal for all schemes, the key point of the proof being that projectivity ascends anddescends along flat and faithfully flat ring homomorphisms, respectively. We willsee that the same holds for the properties of being a .κ-restricted flat Mittag-Lefflermodule for each cardinal.κ >= ℵ0, and also a flat.Q-Mittag-Leffler module whenever.Q is a definable class of finite type. Thus, as in the model case of vector bundles,Zariski locality holds for flat quasi-coherent sheaves induced by each of these classesof modules. Moreover, we will see that the notion of a locally.n-tilting quasi-coherentsheaf is Zariski local for all.n >= 0.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-05148S" target="_blank" >GA23-05148S: Homologická a strukturní teorie v geometrických kontextech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Functor Categories, Model Theory, Algebraic Analysis and Constructive Methods: FCMTCCT2 2022, Almería, Spain, July 11–15, Invited and Selected Contributions
ISBN
978-3-031-53063-0
Počet stran výsledku
26
Strana od-do
223-248
Počet stran knihy
248
Název nakladatele
Springer Cham
Místo vydání
Neuveden
Kód UT WoS kapitoly
—