High order congruences for M-ary partitions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489823" target="_blank" >RIV/00216208:11320/24:10489823 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CHfF~4V.dn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CHfF~4V.dn</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10998-024-00579-0" target="_blank" >10.1007/s10998-024-00579-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High order congruences for M-ary partitions
Popis výsledku v původním jazyce
or a sequence M = (m i )ooi=0 of integers such that m0 = 1, m i >= 2 for i >= 1, let p M (n)denote the number of partitions of n into parts of the form m0m1 . . . m r . In this paper weshow that for every positive integer n the following congruence is true:p M (m1m2 . . . m r n - 1) IDENTICAL TO 0(modrN-ARY PRODUCTt=2M(m t , t - 1)),where M(m, r) := mgcd(m,lcm(1,...,r)) . Our result answers a conjecture posed by Folsom,Homma, Ryu and Tong, and is a generalisation of the congruence relations for m-ary partitionsfound by Andrews, Gupta, and Rodseth and Sellers.
Název v anglickém jazyce
High order congruences for M-ary partitions
Popis výsledku anglicky
or a sequence M = (m i )ooi=0 of integers such that m0 = 1, m i >= 2 for i >= 1, let p M (n)denote the number of partitions of n into parts of the form m0m1 . . . m r . In this paper weshow that for every positive integer n the following congruence is true:p M (m1m2 . . . m r n - 1) IDENTICAL TO 0(modrN-ARY PRODUCTt=2M(m t , t - 1)),where M(m, r) := mgcd(m,lcm(1,...,r)) . Our result answers a conjecture posed by Folsom,Homma, Ryu and Tong, and is a generalisation of the congruence relations for m-ary partitionsfound by Andrews, Gupta, and Rodseth and Sellers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GM21-00420M" target="_blank" >GM21-00420M: Univerzální kvadratické formy a třídová čísla</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Periodica mathematica Hungarica
ISSN
0031-5303
e-ISSN
1588-2829
Svazek periodika
89
Číslo periodika v rámci svazku
14 June 2024
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
13
Strana od-do
155-167
Kód UT WoS článku
001256719900001
EID výsledku v databázi Scopus
2-s2.0-85195866966