On the Natural Density of Sets Related to Generalized Fibonacci Numbers of Order r
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018556" target="_blank" >RIV/62690094:18470/21:50018556 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2075-1680/10/3/144" target="_blank" >https://www.mdpi.com/2075-1680/10/3/144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/axioms10030144" target="_blank" >10.3390/axioms10030144</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Natural Density of Sets Related to Generalized Fibonacci Numbers of Order r
Popis výsledku v původním jazyce
For r >= 2 and a >= 1 integers, let (t(n)((r,a)))(n >= 1) be the sequence of the (r,a)-generalized Fibonacci numbers which is defined by the recurrence t(n)((r,a))=t(n-1)((r,a))+ . . .+t(n-r)((r,a)) for n>r, with initial values t(i)((r,a))=1, for all i is an element of[1,r-1] and t(r)((r,a))=a. In this paper, we shall prove (in particular) that, for any given r >= 2, there exists a positive proportion of positive integers which can not be written as t(n)((r,a)) for any (n,a)is an element of Z(>= r+2)xZ(>1).
Název v anglickém jazyce
On the Natural Density of Sets Related to Generalized Fibonacci Numbers of Order r
Popis výsledku anglicky
For r >= 2 and a >= 1 integers, let (t(n)((r,a)))(n >= 1) be the sequence of the (r,a)-generalized Fibonacci numbers which is defined by the recurrence t(n)((r,a))=t(n-1)((r,a))+ . . .+t(n-r)((r,a)) for n>r, with initial values t(i)((r,a))=1, for all i is an element of[1,r-1] and t(r)((r,a))=a. In this paper, we shall prove (in particular) that, for any given r >= 2, there exists a positive proportion of positive integers which can not be written as t(n)((r,a)) for any (n,a)is an element of Z(>= r+2)xZ(>1).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Axioms
ISSN
2075-1680
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
6
Strana od-do
"Article Number: 144"
Kód UT WoS článku
000699084600001
EID výsledku v databázi Scopus
2-s2.0-85113402613