On the Uncrossed Number of Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490827" target="_blank" >RIV/00216208:11320/24:10490827 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/24:00139108
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.GD.2024.18" target="_blank" >https://doi.org/10.4230/LIPIcs.GD.2024.18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.GD.2024.18" target="_blank" >10.4230/LIPIcs.GD.2024.18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Uncrossed Number of Graphs
Popis výsledku v původním jazyce
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G to be drawn without crossings while allowing multiple different drawings of G. More formally, acollection D of drawings of G is uncrossed if, for each edge e of G, there is a drawing in D such that e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in some uncrossed collection of G. No exact values of the uncrossed numbers have been determined yet, not even for simple graph classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD 2023]. We also present a strong general lower bound on unc(G) in terms of the number of verticesand edges of G. Moreover, we prove NP-hardness of the related problem of determining the edgecrossing number of a graph G, which is the smallest number of edges of G taken over all drawings ofG that participate in a crossing. This problem was posed as open by Schaefer in his book [CrossingNumbers of Graphs 2018].
Název v anglickém jazyce
On the Uncrossed Number of Graphs
Popis výsledku anglicky
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G to be drawn without crossings while allowing multiple different drawings of G. More formally, acollection D of drawings of G is uncrossed if, for each edge e of G, there is a drawing in D such that e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in some uncrossed collection of G. No exact values of the uncrossed numbers have been determined yet, not even for simple graph classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD 2023]. We also present a strong general lower bound on unc(G) in terms of the number of verticesand edges of G. Moreover, we prove NP-hardness of the related problem of determining the edgecrossing number of a graph G, which is the smallest number of edges of G taken over all drawings ofG that participate in a crossing. This problem was posed as open by Schaefer in his book [CrossingNumbers of Graphs 2018].
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX23-04949X" target="_blank" >GX23-04949X: Stěžejní otázky diskrétní geometrie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
32nd International Symposium on Graph Drawing and Network Visualization
ISBN
978-3-95977-343-0
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
—
Název nakladatele
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern
Místo vydání
Německo
Místo konání akce
Vienna, Austria
Datum konání akce
18. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—