Linear programming sensitivity measured by the optimal value worst-case analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491182" target="_blank" >RIV/00216208:11320/24:10491182 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PYjzQYCtX9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PYjzQYCtX9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10556788.2024.2329590" target="_blank" >10.1080/10556788.2024.2329590</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear programming sensitivity measured by the optimal value worst-case analysis
Popis výsledku v původním jazyce
This paper introduces the concept of a derivative of the optimal value function in linear programming (LP). Basically, it is the worst case optimal value of an interval LP problem when the nominal data are inflated to intervals according to given perturbation patterns. By definition, the derivative expresses how the optimal value can worsen when the data are subject to variations. In addition, it also gives a certain sensitivity measure or condition number of an LP problem. If the LP problem is nondegenerate, the derivatives are easy to calculate from the computed primal and dual optimal solutions. For degenerate problems, the computation is more difficult. We propose an upper bound and some kind of characterization, but there are many open problems remaining. We carried out numerical experiments with specific LP problems and with real LP data from Netlib repository. They show that the derivatives give a suitable sensitivity measure of LP problems. It remains an open problem how to efficiently and rigorously handle degenerate problems.
Název v anglickém jazyce
Linear programming sensitivity measured by the optimal value worst-case analysis
Popis výsledku anglicky
This paper introduces the concept of a derivative of the optimal value function in linear programming (LP). Basically, it is the worst case optimal value of an interval LP problem when the nominal data are inflated to intervals according to given perturbation patterns. By definition, the derivative expresses how the optimal value can worsen when the data are subject to variations. In addition, it also gives a certain sensitivity measure or condition number of an LP problem. If the LP problem is nondegenerate, the derivatives are easy to calculate from the computed primal and dual optimal solutions. For degenerate problems, the computation is more difficult. We propose an upper bound and some kind of characterization, but there are many open problems remaining. We carried out numerical experiments with specific LP problems and with real LP data from Netlib repository. They show that the derivatives give a suitable sensitivity measure of LP problems. It remains an open problem how to efficiently and rigorously handle degenerate problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optimization Methods and Software
ISSN
1055-6788
e-ISSN
1029-4937
Svazek periodika
39
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
1168-1184
Kód UT WoS článku
001198411200001
EID výsledku v databázi Scopus
2-s2.0-85190255204