A Simple Formula for the Generalized Spectrum of Second Order Self-Adjoint Differential Operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492946" target="_blank" >RIV/00216208:11320/24:10492946 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9CfcF7qTL6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9CfcF7qTL6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/23M1600992" target="_blank" >10.1137/23M1600992</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Simple Formula for the Generalized Spectrum of Second Order Self-Adjoint Differential Operators
Popis výsledku v původním jazyce
We analyze the spectrum of the operator Delta - 1 [V center dot ( K V u )] subject to homogeneous Dirichlet or Neumann boundary conditions, where Delta denotes the Laplacian and K = K ( x, y ) is a symmetric tensor. Our main result shows that this spectrum can be derived from the spectral decomposition K = Q Lambda Q T , where Q = Q ( x, y ) is an orthogonal matrix and Lambda = Lambda ( x, y ) is a diagonal matrix. More precisely, provided that K is continuous, the spectrum equals the convex hull of the ranges of the diagonal function entries of Lambda . The domain involved is assumed to be bounded and Lipschitz. In addition to studying operators defined on infinite -dimensional Sobolev spaces, we also report on recent results concerning their discretized finite -dimensional counterparts. More specifically, even though Delta - 1 [V center dot ( K V u )] is not compact, it turns out that every point in the spectrum of this operator can, to an arbitrary accuracy, be approximated by eigenvalues of the associated generalized algebraic eigenvalue problems arising from discretizations. Our theoretical investigations are illuminated by numerical experiments. The results presented in this paper extend previous analyses which have addressed elliptic differential operators with scalar coefficient functions. Our investigation is motivated by both preconditioning issues (efficient numerical computations) and the need to further develop the spectral theory of second order PDEs (core analysis).
Název v anglickém jazyce
A Simple Formula for the Generalized Spectrum of Second Order Self-Adjoint Differential Operators
Popis výsledku anglicky
We analyze the spectrum of the operator Delta - 1 [V center dot ( K V u )] subject to homogeneous Dirichlet or Neumann boundary conditions, where Delta denotes the Laplacian and K = K ( x, y ) is a symmetric tensor. Our main result shows that this spectrum can be derived from the spectral decomposition K = Q Lambda Q T , where Q = Q ( x, y ) is an orthogonal matrix and Lambda = Lambda ( x, y ) is a diagonal matrix. More precisely, provided that K is continuous, the spectrum equals the convex hull of the ranges of the diagonal function entries of Lambda . The domain involved is assumed to be bounded and Lipschitz. In addition to studying operators defined on infinite -dimensional Sobolev spaces, we also report on recent results concerning their discretized finite -dimensional counterparts. More specifically, even though Delta - 1 [V center dot ( K V u )] is not compact, it turns out that every point in the spectrum of this operator can, to an arbitrary accuracy, be approximated by eigenvalues of the associated generalized algebraic eigenvalue problems arising from discretizations. Our theoretical investigations are illuminated by numerical experiments. The results presented in this paper extend previous analyses which have addressed elliptic differential operators with scalar coefficient functions. Our investigation is motivated by both preconditioning issues (efficient numerical computations) and the need to further develop the spectral theory of second order PDEs (core analysis).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Review
ISSN
0036-1445
e-ISSN
1095-7200
Svazek periodika
66
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
125-146
Kód UT WoS článku
001222180700004
EID výsledku v databázi Scopus
2-s2.0-85187715352