On Approximately Strategy-Proof Tournament Rules for Collusions of Size at Least Three
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493145" target="_blank" >RIV/00216208:11320/24:10493145 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-73903-3_3" target="_blank" >https://doi.org/10.1007/978-3-031-73903-3_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-73903-3_3" target="_blank" >10.1007/978-3-031-73903-3_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Approximately Strategy-Proof Tournament Rules for Collusions of Size at Least Three
Popis výsledku v původním jazyce
Any (probabilistic) rule for selecting the winner from n teams after observing the outcomes of all matches among them should be Condorcet consistent (i.e., a team that wins all its matches is always selected as the winner) and monotone (i.e., no team can increase its chance of being selected as the winner by throwing matches). Moreover, the rule should be k-SNM-p (i.e., no subset of at most k teams can fix the matches among themselves in order to increase the collective chance that one of them is selected as the winner by at most p) for p as small as possible.We designed and analyzed two new rules satisfying all these properties. The first rule satisfies k-SNM-p for k=3 and p=1/2. The second rule satisfies it for general k and some p (depending on k) that is strictly less than 1. In both cases, we achieved the state-of-the-art results.Finally, given any rule for n teams satisfying k-SNM-p, we constructed a rule for n'>n teams satisfying k-SNM-p' with only a slightly worse guarantee on p'.
Název v anglickém jazyce
On Approximately Strategy-Proof Tournament Rules for Collusions of Size at Least Three
Popis výsledku anglicky
Any (probabilistic) rule for selecting the winner from n teams after observing the outcomes of all matches among them should be Condorcet consistent (i.e., a team that wins all its matches is always selected as the winner) and monotone (i.e., no team can increase its chance of being selected as the winner by throwing matches). Moreover, the rule should be k-SNM-p (i.e., no subset of at most k teams can fix the matches among themselves in order to increase the collective chance that one of them is selected as the winner by at most p) for p as small as possible.We designed and analyzed two new rules satisfying all these properties. The first rule satisfies k-SNM-p for k=3 and p=1/2. The second rule satisfies it for general k and some p (depending on k) that is strictly less than 1. In both cases, we achieved the state-of-the-art results.Finally, given any rule for n teams satisfying k-SNM-p, we constructed a rule for n'>n teams satisfying k-SNM-p' with only a slightly worse guarantee on p'.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Algorithmic Decision Theory
ISBN
978-3-031-73903-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
15
Strana od-do
33-47
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Piscataway
Datum konání akce
14. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—