The question answering system GeoQA2 and a new benchmark for its evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A2B9V2IRV" target="_blank" >RIV/00216208:11320/25:2B9V2IRV - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206337298&doi=10.1016%2fj.jag.2024.104203&partnerID=40&md5=47cd0fda563312f6281cabe8e18bf6bb" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206337298&doi=10.1016%2fj.jag.2024.104203&partnerID=40&md5=47cd0fda563312f6281cabe8e18bf6bb</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jag.2024.104203" target="_blank" >10.1016/j.jag.2024.104203</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The question answering system GeoQA2 and a new benchmark for its evaluation
Popis výsledku v původním jazyce
We present the question answering engine GeoQA2 which is able to answer geospatial questions over the union of knowledge graphs YAGO2 and YAGO2geo. We also present the dataset GEOQUESTIONS1089 which consists of 1089 natural language questions, their corresponding SPARQL or GeoSPARQL queries and their answers over the union of the same knowledge graphs. We use this dataset to compare the effectiveness of GeoQA2 and the system of Hamzei et al. 2022 and make it publicly available to be used by other researchers. Our evaluation shows that although the engine GeoQA2 performs better than the engine of Hamzei et al. 2022, both engines have ample room for improvement in their question answering performance. © 2024 The Authors
Název v anglickém jazyce
The question answering system GeoQA2 and a new benchmark for its evaluation
Popis výsledku anglicky
We present the question answering engine GeoQA2 which is able to answer geospatial questions over the union of knowledge graphs YAGO2 and YAGO2geo. We also present the dataset GEOQUESTIONS1089 which consists of 1089 natural language questions, their corresponding SPARQL or GeoSPARQL queries and their answers over the union of the same knowledge graphs. We use this dataset to compare the effectiveness of GeoQA2 and the system of Hamzei et al. 2022 and make it publicly available to be used by other researchers. Our evaluation shows that although the engine GeoQA2 performs better than the engine of Hamzei et al. 2022, both engines have ample room for improvement in their question answering performance. © 2024 The Authors
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Applied Earth Observation and Geoinformation
ISSN
1569-8432
e-ISSN
—
Svazek periodika
134
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85206337298