Across Images and Graphs for Question Answering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AGCD72W98" target="_blank" >RIV/00216208:11320/25:GCD72W98 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200447291&doi=10.1109%2fICDE60146.2024.00112&partnerID=40&md5=2c3d78ee352cdb18e861e0fb7c79f868" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200447291&doi=10.1109%2fICDE60146.2024.00112&partnerID=40&md5=2c3d78ee352cdb18e861e0fb7c79f868</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDE60146.2024.00112" target="_blank" >10.1109/ICDE60146.2024.00112</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Across Images and Graphs for Question Answering
Popis výsledku v původním jazyce
Cross-source query serves as a proxy for scene understanding to support many web applications such as rec-ommendation systems, e-commerce, and e-learning applications. In this paper, we propose SVQA that semantically combines the knowledge from available images and graphs to answer the complex question. To this end, we design a graph-based method to unify various data sources into one representation. We then develop a complex question parse method that utilizes the structure of languages to transform the query into a query graph. A graph query engine that performs the query graph over the unified data source while optimizing the query process. To evaluate the proposed system, we build a vanilla dataset called MVQA and show that the state-of-the-art (SOTA) VQA models fail to perform our task. The comprehensive evaluations show that the proposed SVQA is able to reason implicit relationships over multiple images and external knowledge to correctly answer a complex query. We hope that our first attempt provides researchers with a fresh taste of multimodal data analysis. © 2024 IEEE.
Název v anglickém jazyce
Across Images and Graphs for Question Answering
Popis výsledku anglicky
Cross-source query serves as a proxy for scene understanding to support many web applications such as rec-ommendation systems, e-commerce, and e-learning applications. In this paper, we propose SVQA that semantically combines the knowledge from available images and graphs to answer the complex question. To this end, we design a graph-based method to unify various data sources into one representation. We then develop a complex question parse method that utilizes the structure of languages to transform the query into a query graph. A graph query engine that performs the query graph over the unified data source while optimizing the query process. To evaluate the proposed system, we build a vanilla dataset called MVQA and show that the state-of-the-art (SOTA) VQA models fail to perform our task. The comprehensive evaluations show that the proposed SVQA is able to reason implicit relationships over multiple images and external knowledge to correctly answer a complex query. We hope that our first attempt provides researchers with a fresh taste of multimodal data analysis. © 2024 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc Int Conf Data Eng
ISBN
979-835031715-2
ISSN
1084-4627
e-ISSN
—
Počet stran výsledku
14
Strana od-do
1366-1379
Název nakladatele
IEEE Computer Society
Místo vydání
—
Místo konání akce
Utrecht
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—