Comparison of various approaches to tagging for the inflectional Slovak language
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQU27UJUV" target="_blank" >RIV/00216208:11320/25:QU27UJUV - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216275:25410/24:39922254
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196088719&doi=10.7717%2fPEERJ-CS.2026&partnerID=40&md5=d86c5ff910c37031dd275ab7f425af41" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196088719&doi=10.7717%2fPEERJ-CS.2026&partnerID=40&md5=d86c5ff910c37031dd275ab7f425af41</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/PEERJ-CS.2026" target="_blank" >10.7717/PEERJ-CS.2026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of various approaches to tagging for the inflectional Slovak language
Popis výsledku v původním jazyce
Morphological tagging provides essential insights into grammar, structure, and the mutual relationships of words within the sentence. Tagging text in a highly inflectional language presents a challenging task due to word ambiguity. This research aims to compare six different automatic taggers for the inflectional Slovak language, seeking for the most accurate tagger for literary and non-literary texts. Our results indicate that it is useful to differentiate texts into literary and non-literary and subsequently, based on the text style to deploy a tagger. For literary texts, UDPipe2 outperformed others in seven out of nine examined tagset positions. Conversely, for non-literary texts, the RNNTagger exhibited the highest performance in eight out of nine examined tagset positions. The RNNTagger is recommended for both types of the text, the best captures the inflection of the Slovak language, but UDPipe2 demonstrates a higher accuracy for literary texts. Despite dataset size limitations, this study emphasizes the suitability of various taggers for the inflectional languages like Slovak. © Copyright 2024 Benko et al.
Název v anglickém jazyce
Comparison of various approaches to tagging for the inflectional Slovak language
Popis výsledku anglicky
Morphological tagging provides essential insights into grammar, structure, and the mutual relationships of words within the sentence. Tagging text in a highly inflectional language presents a challenging task due to word ambiguity. This research aims to compare six different automatic taggers for the inflectional Slovak language, seeking for the most accurate tagger for literary and non-literary texts. Our results indicate that it is useful to differentiate texts into literary and non-literary and subsequently, based on the text style to deploy a tagger. For literary texts, UDPipe2 outperformed others in seven out of nine examined tagset positions. Conversely, for non-literary texts, the RNNTagger exhibited the highest performance in eight out of nine examined tagset positions. The RNNTagger is recommended for both types of the text, the best captures the inflection of the Slovak language, but UDPipe2 demonstrates a higher accuracy for literary texts. Despite dataset size limitations, this study emphasizes the suitability of various taggers for the inflectional languages like Slovak. © Copyright 2024 Benko et al.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ Computer Science
ISSN
2376-5992
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
1-31
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85196088719