Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Text-to-Speech Application for Training of Aviation Radio Telephony Communication Operators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AVRN2K6JD" target="_blank" >RIV/00216208:11320/25:VRN2K6JD - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85210275185&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Text-to-Speech+Application+for+Training+of+Aviation+Radio+Telephony+Communication+Operators%29&relpos=0" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85210275185&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28Text-to-Speech+Application+for+Training+of+Aviation+Radio+Telephony+Communication+Operators%29&relpos=0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TAES.2024.3504493" target="_blank" >10.1109/TAES.2024.3504493</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Text-to-Speech Application for Training of Aviation Radio Telephony Communication Operators

  • Popis výsledku v původním jazyce

    Air traffic controllers’ (ATCos) workload often is a limiting factor for air traffic capacity. Thus, electronic support systems intend to reduce ATCos’ workload. Automatic Speech Recognition (ASR) can extract controller command elements from verbal clearances to deliver automatic air traffic control (ATC) system input and avoiding manual input. Assistant Based Speech Recognition (ABSR) systems with high command recognition rates and low error rates have proven to dramatically reduce ATCos’ workload and increase capacity as an effect. However, those ABSR systems need accurate hypotheses about expected commands to achieve the necessary performance. Based on the experience with an ATC approach hypotheses generator, a prototypic tower command hypotheses generator (TCHG) was developed to face current and future challenges in the aerodrome environment. Two human-in-the-loop multiple remote tower simulation studies were performed with 13 ATCos from Hungary and Lithuania at DLR Braunschweig. Almost 40 hours of speech with corresponding radar data were recorded for training of the TCHG prediction models in 2017/2018. More than 45 hours of speech and radar data comprising roughly 4,600 voice utterances were recorded in the second simulation campaign for the TCHG evaluation test end of 2018. The TCHG showed operational feasibility with a sufficiently low command prediction error rate of down to 7.3% and low context portion predicted having a sufficiently fast command prediction frequency of once per 120ms to timely deliver the hypotheses to a speech recognition engine. Thus, the next step is to build an integrated ABSR system for the tower environment.

  • Název v anglickém jazyce

    Text-to-Speech Application for Training of Aviation Radio Telephony Communication Operators

  • Popis výsledku anglicky

    Air traffic controllers’ (ATCos) workload often is a limiting factor for air traffic capacity. Thus, electronic support systems intend to reduce ATCos’ workload. Automatic Speech Recognition (ASR) can extract controller command elements from verbal clearances to deliver automatic air traffic control (ATC) system input and avoiding manual input. Assistant Based Speech Recognition (ABSR) systems with high command recognition rates and low error rates have proven to dramatically reduce ATCos’ workload and increase capacity as an effect. However, those ABSR systems need accurate hypotheses about expected commands to achieve the necessary performance. Based on the experience with an ATC approach hypotheses generator, a prototypic tower command hypotheses generator (TCHG) was developed to face current and future challenges in the aerodrome environment. Two human-in-the-loop multiple remote tower simulation studies were performed with 13 ATCos from Hungary and Lithuania at DLR Braunschweig. Almost 40 hours of speech with corresponding radar data were recorded for training of the TCHG prediction models in 2017/2018. More than 45 hours of speech and radar data comprising roughly 4,600 voice utterances were recorded in the second simulation campaign for the TCHG evaluation test end of 2018. The TCHG showed operational feasibility with a sufficiently low command prediction error rate of down to 7.3% and low context portion predicted having a sufficiently fast command prediction frequency of once per 120ms to timely deliver the hypotheses to a speech recognition engine. Thus, the next step is to build an integrated ABSR system for the tower environment.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Aerospace and Electronic Systems

  • ISSN

    0018-9251

  • e-ISSN

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    1-21

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85210275185