Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Call Sign Detection: Matching Air Surveillance Data with Air Traffic Spoken Communications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138639" target="_blank" >RIV/00216305:26230/20:PU138639 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2504-3900/59/1/14/pdf" target="_blank" >https://www.mdpi.com/2504-3900/59/1/14/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/proceedings2020059014" target="_blank" >10.3390/proceedings2020059014</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Call Sign Detection: Matching Air Surveillance Data with Air Traffic Spoken Communications

  • Popis výsledku v původním jazyce

    Voice communication is the main channel to exchange information between pilots and Air-Traffic Controllers (ATCos). Recently, several projects have explored the employment of speech recognition technology to automatically extract spoken key information such as call signs, commands, and values, which can be used to reduce ATCos workload and increase performance and safety in Air-Traffic Control (ATC)-related activities. Nevertheless, the collection of ATC speech data is very demanding, expensive, and limited to the intrinsic speakers characteristics. As a solution, this paper presents ATCO2, a project that aims to develop a unique platform to collect, organize, and pre-process ATC data collected from air space. Initially, the data are gathered directly through publicly accessible radio frequency channels with VHF receivers and LiveATC, which can be considered as an "unlimited-source" of low-quality data. The ATCO2 project explores employing context information such as radar and air surveillance data (collected with ADS-B and Mode S) from the OpenSky Network (OSN) to correlate call signs automatically extracted from voice communication with those available from ADS-B channels, to eventually increase the overall call sign detection rates. More specifically, the timestamp and location of the spoken command (issued by the ATCo by voice) are extracted, and a query is sent to the OSN server to retrieve the call sign tags in ICAO format for the airplanes corresponding to the given area. Then, a word sequence provided by an automatic speech recognition system is fed into a Natural Language Processing (NLP) based module together with the set of call signs available from the ADS-B channels. The NLP module extracts the call sign, command, and command arguments from the spoken utterance.

  • Název v anglickém jazyce

    Automatic Call Sign Detection: Matching Air Surveillance Data with Air Traffic Spoken Communications

  • Popis výsledku anglicky

    Voice communication is the main channel to exchange information between pilots and Air-Traffic Controllers (ATCos). Recently, several projects have explored the employment of speech recognition technology to automatically extract spoken key information such as call signs, commands, and values, which can be used to reduce ATCos workload and increase performance and safety in Air-Traffic Control (ATC)-related activities. Nevertheless, the collection of ATC speech data is very demanding, expensive, and limited to the intrinsic speakers characteristics. As a solution, this paper presents ATCO2, a project that aims to develop a unique platform to collect, organize, and pre-process ATC data collected from air space. Initially, the data are gathered directly through publicly accessible radio frequency channels with VHF receivers and LiveATC, which can be considered as an "unlimited-source" of low-quality data. The ATCO2 project explores employing context information such as radar and air surveillance data (collected with ADS-B and Mode S) from the OpenSky Network (OSN) to correlate call signs automatically extracted from voice communication with those available from ADS-B channels, to eventually increase the overall call sign detection rates. More specifically, the timestamp and location of the spoken command (issued by the ATCo by voice) are extracted, and a query is sent to the OSN server to retrieve the call sign tags in ICAO format for the airplanes corresponding to the given area. Then, a word sequence provided by an automatic speech recognition system is fed into a Natural Language Processing (NLP) based module together with the set of call signs available from the ADS-B channels. The NLP module extracts the call sign, command, and command arguments from the spoken utterance.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 8th OpenSky Symposium 2020

  • ISBN

  • ISSN

    2504-3900

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Název nakladatele

    MDPI

  • Místo vydání

    Brusel

  • Místo konání akce

    EUROCONTROL in Brussels

  • Datum konání akce

    12. 11. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku