Automatic Call Sign Detection: Matching Air Surveillance Data with Air Traffic Spoken Communications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138639" target="_blank" >RIV/00216305:26230/20:PU138639 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2504-3900/59/1/14/pdf" target="_blank" >https://www.mdpi.com/2504-3900/59/1/14/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/proceedings2020059014" target="_blank" >10.3390/proceedings2020059014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Call Sign Detection: Matching Air Surveillance Data with Air Traffic Spoken Communications
Popis výsledku v původním jazyce
Voice communication is the main channel to exchange information between pilots and Air-Traffic Controllers (ATCos). Recently, several projects have explored the employment of speech recognition technology to automatically extract spoken key information such as call signs, commands, and values, which can be used to reduce ATCos workload and increase performance and safety in Air-Traffic Control (ATC)-related activities. Nevertheless, the collection of ATC speech data is very demanding, expensive, and limited to the intrinsic speakers characteristics. As a solution, this paper presents ATCO2, a project that aims to develop a unique platform to collect, organize, and pre-process ATC data collected from air space. Initially, the data are gathered directly through publicly accessible radio frequency channels with VHF receivers and LiveATC, which can be considered as an "unlimited-source" of low-quality data. The ATCO2 project explores employing context information such as radar and air surveillance data (collected with ADS-B and Mode S) from the OpenSky Network (OSN) to correlate call signs automatically extracted from voice communication with those available from ADS-B channels, to eventually increase the overall call sign detection rates. More specifically, the timestamp and location of the spoken command (issued by the ATCo by voice) are extracted, and a query is sent to the OSN server to retrieve the call sign tags in ICAO format for the airplanes corresponding to the given area. Then, a word sequence provided by an automatic speech recognition system is fed into a Natural Language Processing (NLP) based module together with the set of call signs available from the ADS-B channels. The NLP module extracts the call sign, command, and command arguments from the spoken utterance.
Název v anglickém jazyce
Automatic Call Sign Detection: Matching Air Surveillance Data with Air Traffic Spoken Communications
Popis výsledku anglicky
Voice communication is the main channel to exchange information between pilots and Air-Traffic Controllers (ATCos). Recently, several projects have explored the employment of speech recognition technology to automatically extract spoken key information such as call signs, commands, and values, which can be used to reduce ATCos workload and increase performance and safety in Air-Traffic Control (ATC)-related activities. Nevertheless, the collection of ATC speech data is very demanding, expensive, and limited to the intrinsic speakers characteristics. As a solution, this paper presents ATCO2, a project that aims to develop a unique platform to collect, organize, and pre-process ATC data collected from air space. Initially, the data are gathered directly through publicly accessible radio frequency channels with VHF receivers and LiveATC, which can be considered as an "unlimited-source" of low-quality data. The ATCO2 project explores employing context information such as radar and air surveillance data (collected with ADS-B and Mode S) from the OpenSky Network (OSN) to correlate call signs automatically extracted from voice communication with those available from ADS-B channels, to eventually increase the overall call sign detection rates. More specifically, the timestamp and location of the spoken command (issued by the ATCo by voice) are extracted, and a query is sent to the OSN server to retrieve the call sign tags in ICAO format for the airplanes corresponding to the given area. Then, a word sequence provided by an automatic speech recognition system is fed into a Natural Language Processing (NLP) based module together with the set of call signs available from the ADS-B channels. The NLP module extracts the call sign, command, and command arguments from the spoken utterance.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 8th OpenSky Symposium 2020
ISBN
—
ISSN
2504-3900
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
MDPI
Místo vydání
Brusel
Místo konání akce
EUROCONTROL in Brussels
Datum konání akce
12. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—