Is On-Line Data Analysis Safety? Pitfalls Steaming from Automated Processing of Heterogeneous Environmental Data and Possible Solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F11%3A00052824" target="_blank" >RIV/00216224:14110/11:00052824 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Is On-Line Data Analysis Safety? Pitfalls Steaming from Automated Processing of Heterogeneous Environmental Data and Possible Solutions
Popis výsledku v původním jazyce
The current situation in environmental monitoring is characterized by increasing amount of data from monitoring networks together with increasing requirements on joining of these data from various sources in comprehensive databases and their usage for decision support in environmental protection and management. The automated analysis of such a heterogeneous datasets is a complicated process, rich in statistical pitfalls. There is a number of methods for multivariate classification of objects, e.g. logistic regression, discriminant analysis or neural networks; however, most of commonly used classification techniques have prerequisites about distribution of data, are computationally demanding or their model can be considered as ?black box?. Keeping thesefacts in mind, we attempted to develop a robust multivariate method suitable for classification of unknown cases with minimum sensitivity to data distribution problems; and thus, suitable for routine use in practice.
Název v anglickém jazyce
Is On-Line Data Analysis Safety? Pitfalls Steaming from Automated Processing of Heterogeneous Environmental Data and Possible Solutions
Popis výsledku anglicky
The current situation in environmental monitoring is characterized by increasing amount of data from monitoring networks together with increasing requirements on joining of these data from various sources in comprehensive databases and their usage for decision support in environmental protection and management. The automated analysis of such a heterogeneous datasets is a complicated process, rich in statistical pitfalls. There is a number of methods for multivariate classification of objects, e.g. logistic regression, discriminant analysis or neural networks; however, most of commonly used classification techniques have prerequisites about distribution of data, are computationally demanding or their model can be considered as ?black box?. Keeping thesefacts in mind, we attempted to develop a robust multivariate method suitable for classification of unknown cases with minimum sensitivity to data distribution problems; and thus, suitable for routine use in practice.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
FP - Ostatní lékařské obory
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Environmental Software Systems. Frameworks of eEnvironment. 9th IFIP WG 5.11 International Symposium, ISESS 2011, Brno, Czech Republic, June 27-29, 2011. Proceedings
ISBN
978-3-642-22284-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
486-490
Název nakladatele
Springer
Místo vydání
Neuveden
Místo konání akce
Brno
Datum konání akce
1. 1. 2011
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—