Nonnegativity of discrete quadratic functionals corresponding to symplectic difference systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F03%3A00008259" target="_blank" >RIV/00216224:14310/03:00008259 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonnegativity of discrete quadratic functionals corresponding to symplectic difference systems
Popis výsledku v původním jazyce
We study the nonnegativity of quadratic functionals with separable endpoints which are related to the discrete symplectic system (S). In particular, we characterize the nonnegativity of these functionals in terms of (i) the focal points of the natural conjoined basis of (S) and (ii) the solvability of an implicit Riccati equation associated with (S). This result is closely related to the kernel condition for the natural conjoined basis of (S). We treat the situation when this kernel condition is possibly violated at a certain index. To accomplish this goal, we derive a new characterization of the set of admissible pairs (sequences) that does not require the validity of the above mentioned kernel condition. Finally, we generalize our results to the variable stepsize case.
Název v anglickém jazyce
Nonnegativity of discrete quadratic functionals corresponding to symplectic difference systems
Popis výsledku anglicky
We study the nonnegativity of quadratic functionals with separable endpoints which are related to the discrete symplectic system (S). In particular, we characterize the nonnegativity of these functionals in terms of (i) the focal points of the natural conjoined basis of (S) and (ii) the solvability of an implicit Riccati equation associated with (S). This result is closely related to the kernel condition for the natural conjoined basis of (S). We treat the situation when this kernel condition is possibly violated at a certain index. To accomplish this goal, we derive a new characterization of the set of admissible pairs (sequences) that does not require the validity of the above mentioned kernel condition. Finally, we generalize our results to the variable stepsize case.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F01%2F0079" target="_blank" >GA201/01/0079: Kvalitativní teorie řešení diferenčních rovnic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and its Applications
ISSN
0024-3795
e-ISSN
—
Svazek periodika
375
Číslo periodika v rámci svazku
1.12.2003
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
21-44
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—