O křivosti tensorového součinu konexí
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F04%3A00024526" target="_blank" >RIV/00216224:14310/04:00024526 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the curvature of tensor product connections and covariant differentials
Popis výsledku v původním jazyce
We give coordinate formula and geometric description of the curvature of the tensor product connection of linear connections on vector bundles with the same base manifold. We define the covariant differential of geometric fields of certain types with respect to a pair of a linear connection on a vector bundle and a linear symmetric connection on the base manifold. We prove the generalized Bianchi identity for linear connections and we prove that the antisymmetrization of the second order covariant differential is expressed via the curvature tensors of both connections.
Název v anglickém jazyce
On the curvature of tensor product connections and covariant differentials
Popis výsledku anglicky
We give coordinate formula and geometric description of the curvature of the tensor product connection of linear connections on vector bundles with the same base manifold. We define the covariant differential of geometric fields of certain types with respect to a pair of a linear connection on a vector bundle and a linear symmetric connection on the base manifold. We prove the generalized Bianchi identity for linear connections and we prove that the antisymmetrization of the second order covariant differential is expressed via the curvature tensors of both connections.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F02%2F0225" target="_blank" >GA201/02/0225: Prodlužování geometrických struktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Supplemento di Rendiconti del Circolo Matematico di Palermo
ISSN
0009-725X
e-ISSN
—
Svazek periodika
72
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—