Riccatiho nerovnost a další výsledky pro diskrétní symplektické systémy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00015368" target="_blank" >RIV/00216224:14310/06:00015368 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Riccati inequality and other results for discrete symplectic systems
Popis výsledku v původním jazyce
In this paper we establish several new results regarding the positivity and nonnegativity of discrete quadratic functionals F associated with discrete symplectic systems. In particular, we derive (i) the Riccati inequality for the positivity of F with separated endpoints, (ii) a characterization of the nonnegativity of F for the case of general (jointly varying) endpoints, and (iii) several perturbation-type inequalities regarding the nonnegativity of F with zero endpoints. Some of these results are neweven for the special case of discrete Hamiltonian systems.
Název v anglickém jazyce
Riccati inequality and other results for discrete symplectic systems
Popis výsledku anglicky
In this paper we establish several new results regarding the positivity and nonnegativity of discrete quadratic functionals F associated with discrete symplectic systems. In particular, we derive (i) the Riccati inequality for the positivity of F with separated endpoints, (ii) a characterization of the nonnegativity of F for the case of general (jointly varying) endpoints, and (iii) several perturbation-type inequalities regarding the nonnegativity of F with zero endpoints. Some of these results are neweven for the special case of discrete Hamiltonian systems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
322
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1083-1098
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—