Asymptotické vlastnosti nestabilního dvourozměrného diferenciálního systému se zpožděním
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00015380" target="_blank" >RIV/00216224:14310/06:00015380 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic properties of an unstable two-dimensional differential system with delay
Popis výsledku v původním jazyce
The asymptotic behaviour of the solutions is studied for a real unstable two-dimensional system x'(t)=A(t)x(t)+B(t)x(t-r)+h(t,x(t),x(t-r)), where r>0 is a constant delay. It is supposed that A, B and h are matrix functions and a vector function, respectively. Our results complement those of Kalas [Nonlinear Anal. 62(2)(2005), 207-224], where the conditions for the existence of bounded solutions or solutions tending to the origin as t approaches infinity are given. The method of investigation is basedon the transformation of the real system considered to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle. Stability and asymptotic behaviour of the solutions for the stable case of the equation considered were studied in Kalas and Baráková [J. Math. Anal. Appl. 269(1) (2002), 278--300].
Název v anglickém jazyce
Asymptotic properties of an unstable two-dimensional differential system with delay
Popis výsledku anglicky
The asymptotic behaviour of the solutions is studied for a real unstable two-dimensional system x'(t)=A(t)x(t)+B(t)x(t-r)+h(t,x(t),x(t-r)), where r>0 is a constant delay. It is supposed that A, B and h are matrix functions and a vector function, respectively. Our results complement those of Kalas [Nonlinear Anal. 62(2)(2005), 207-224], where the conditions for the existence of bounded solutions or solutions tending to the origin as t approaches infinity are given. The method of investigation is basedon the transformation of the real system considered to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle. Stability and asymptotic behaviour of the solutions for the stable case of the equation considered were studied in Kalas and Baráková [J. Math. Anal. Appl. 269(1) (2002), 278--300].
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA1163401" target="_blank" >IAA1163401: Limitní vlastnosti řešení diferenciálních rovnic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematica Bohemica : časopis pro pěstování matematiky
ISSN
0862-7959
e-ISSN
—
Svazek periodika
131
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
15
Strana od-do
305-319
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—