Asymptotic Behaviour of a Two-Dimensional Differential System with a Finite Number of Nonconstant Delays under the Conditions of Instability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00113901" target="_blank" >RIV/00216224:14310/12:00113901 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/12:PU98658
Výsledek na webu
<a href="https://www.hindawi.com/journals/aaa/2012/952601/" target="_blank" >https://www.hindawi.com/journals/aaa/2012/952601/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2012/952601" target="_blank" >10.1155/2012/952601</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic Behaviour of a Two-Dimensional Differential System with a Finite Number of Nonconstant Delays under the Conditions of Instability
Popis výsledku v původním jazyce
The asymptotic behaviour of a real two- dimensional differential system x,(t) = A(t)x(t) + Sigma(m)(k=1) B-k(t)x(theta(k)(t)) + h(t, x (t), x(theta(1)(t)),..., x(theta(m)(t))) with unbounded nonconstant delays t-theta(k)(t) >= 0 satisfying lim(t -> infinity)theta(k)(t) = infinity is studied under the assumption of instability. Here, A, B-k, and h are supposed to be matrix functions and a vector function. The conditions for the instable properties of solutions and the conditions for the existence of bounded solutions are given. The methods are based on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties are studied by means of a Lyapunov-Krasovskii functional and the suitable Wazewski topological principle. The results generalize some previous ones, where the asymptotic properties for two- dimensional systems with one constant or nonconstant delay were studied.
Název v anglickém jazyce
Asymptotic Behaviour of a Two-Dimensional Differential System with a Finite Number of Nonconstant Delays under the Conditions of Instability
Popis výsledku anglicky
The asymptotic behaviour of a real two- dimensional differential system x,(t) = A(t)x(t) + Sigma(m)(k=1) B-k(t)x(theta(k)(t)) + h(t, x (t), x(theta(1)(t)),..., x(theta(m)(t))) with unbounded nonconstant delays t-theta(k)(t) >= 0 satisfying lim(t -> infinity)theta(k)(t) = infinity is studied under the assumption of instability. Here, A, B-k, and h are supposed to be matrix functions and a vector function. The conditions for the instable properties of solutions and the conditions for the existence of bounded solutions are given. The methods are based on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties are studied by means of a Lyapunov-Krasovskii functional and the suitable Wazewski topological principle. The results generalize some previous ones, where the asymptotic properties for two- dimensional systems with one constant or nonconstant delay were studied.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Abstract and Applied Analysis
ISSN
1085-3375
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
2012
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000308166500001
EID výsledku v databázi Scopus
2-s2.0-84866092020