Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Oscillation and spectral theory of Sturm-Liouville differential equations with nonlinear dependence in spectral parameter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00066009" target="_blank" >RIV/00216224:14310/13:00066009 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Oscillation and spectral theory of Sturm-Liouville differential equations with nonlinear dependence in spectral parameter

  • Popis výsledku v původním jazyce

    In this paper, we consider the eigenvalue problem for the second order Sturm-Liouville differential equation and the Dirichlet boundary conditions. Our setting is more general than in the current literature in two respects: (i) the coefficients depend onthe spectral parameter lambda in general nonlinearly, and (ii) the potential is merely monotone in lambda and not necessarily strictly monotone in lambda, so that the usual strict normality assumption is now removed. This general setting leads to new definitions of an eigenvalue and an eigenfunction - called a finite eigenvalue and a finite eigenfunction. With these new concepts we show that the finite eigenvalues are isolated, bounded from below, and establish an oscillation theorem, i.e., a result counting the zeros of the finite eigenfunctions. The traditional theory in which the potential is linear and strictly monotone in lambda nicely follows from our results.

  • Název v anglickém jazyce

    Oscillation and spectral theory of Sturm-Liouville differential equations with nonlinear dependence in spectral parameter

  • Popis výsledku anglicky

    In this paper, we consider the eigenvalue problem for the second order Sturm-Liouville differential equation and the Dirichlet boundary conditions. Our setting is more general than in the current literature in two respects: (i) the coefficients depend onthe spectral parameter lambda in general nonlinearly, and (ii) the potential is merely monotone in lambda and not necessarily strictly monotone in lambda, so that the usual strict normality assumption is now removed. This general setting leads to new definitions of an eigenvalue and an eigenfunction - called a finite eigenvalue and a finite eigenfunction. With these new concepts we show that the finite eigenvalues are isolated, bounded from below, and establish an oscillation theorem, i.e., a result counting the zeros of the finite eigenfunctions. The traditional theory in which the potential is linear and strictly monotone in lambda nicely follows from our results.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Diferenční rovnice a dynamické rovnice na ,,time scales'' III</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Dynamic Systems and Applications

  • ISSN

    1056-2176

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    115-124

  • Kód UT WoS článku

    000328805600008

  • EID výsledku v databázi Scopus