The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00088597" target="_blank" >RIV/00216224:14310/16:00088597 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/cm-2016-0012" target="_blank" >http://dx.doi.org/10.1515/cm-2016-0012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/cm-2016-0012" target="_blank" >10.1515/cm-2016-0012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories
Popis výsledku v původním jazyce
As widely accepted, justied by the historical developments of physics, the background for standard formulation of postulates of physical theories leading to equations of motion, or even the form of equations of motion themselves, come from empirical experience. Equations of motion are then a starting point for obtaining specic conservation laws, as, for example, the well-known conservation laws of momenta and mechanical energy in mechanics. On the other hand, there are numerous examples of physical laws or equations of motion which can be obtained from a certain variational principle as Euler-Lagrange equations and their solutions, meaning that the true trajectories" of the physical systems represent stationary points of the corresponding functionals. It turns out that equations of motion in most of the fundamental theories of physics (as e.g. classical mechanics, mechanics of continuous media or uids, electrodynamics, quantum mechanics, string theory, etc.
Název v anglickém jazyce
The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories
Popis výsledku anglicky
As widely accepted, justied by the historical developments of physics, the background for standard formulation of postulates of physical theories leading to equations of motion, or even the form of equations of motion themselves, come from empirical experience. Equations of motion are then a starting point for obtaining specic conservation laws, as, for example, the well-known conservation laws of momenta and mechanical energy in mechanics. On the other hand, there are numerous examples of physical laws or equations of motion which can be obtained from a certain variational principle as Euler-Lagrange equations and their solutions, meaning that the true trajectories" of the physical systems represent stationary points of the corresponding functionals. It turns out that equations of motion in most of the fundamental theories of physics (as e.g. classical mechanics, mechanics of continuous media or uids, electrodynamics, quantum mechanics, string theory, etc.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-02476S" target="_blank" >GA14-02476S: Variace, geometrie a fyzika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in mathematics
ISSN
1804-1388
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
173-193
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85008950966